Patents by Inventor Mikihiro Ouchi

Mikihiro Ouchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10985815
    Abstract: All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: April 20, 2021
    Assignee: SUN PATENT TRUST
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 10979276
    Abstract: Provided is a transmission method that improves data reception quality in radio transmission using a single-carrier scheme and/or a multi-carrier scheme. The transmission method includes: generating a plurality of first modulated signals s1(i) and second modulated signals s2(i) from transmission data, the plurality of first modulated signals s1(i) being signals generated using a QPSK modulation scheme, and the plurality of second modulated signals s2(i) being signals generated using 16QAM modulation; generating, from the plurality of first modulated signals s1(i) and the plurality of second modulated signals s2(i), a plurality of first signal-processed signals z1(i) and a plurality of second signal-processed signals z2(i) which satisfy a predetermined equation; and transmitting the plurality of first signal-processed signals z1(i) and the plurality of second signal-processed signals z2(i) using a plurality of antennas.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: April 13, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 10979268
    Abstract: A transmitting method includes: configuring a frame using a plurality of orthogonal frequency-division multiplexing (OFDM) symbols, by allocating a plurality of transmission data to a plurality of areas; and transmitting the frame. The plurality of areas are each identified by at least one time resource among resources and at least one frequency resource among frequency resources. The frame includes a first period in which a preamble is transmitted, and a second period in which the plurality of transmission data are transmitted by at least one of time division and frequency division. The second period includes a first area, and the first area includes a data symbol generated from first transmission data, a data symbol generated from second transmission data and subsequent to the data symbol generated from the first transmission data, and a dummy symbol subsequent to the data symbol generated from the second transmission data.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: April 13, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Yutaka Murakami, Yoshio Urabe, Tomohiro Kimura, Mikihiro Ouchi
  • Publication number: 20210105048
    Abstract: Disclosed is a transmission scheme for transmitting a first modulated signal and a second modulated signal over the same frequency at the same time. According to the transmission scheme, a precoding weight multiplying unit multiplies a baseband signal after a first mapping and a baseband signal after a second mapping by a precoding weight and outputs the first modulated signal and the second modulated signal. In the precoding weight multiplying unit, precoding weights are regularly hopped.
    Type: Application
    Filed: May 12, 2020
    Publication date: April 8, 2021
    Inventors: Yutaka MURAKAMI, Tomohiro KIMURA, Mikihiro OUCHI
  • Publication number: 20210105163
    Abstract: A transmission method includes mapping processing, phase change processing, and transmission processing. In the mapping processing, a plurality of first modulation signals and a plurality of second modulation signals are generated using a first mapping scheme, and a plurality of third modulation signals and a plurality of fourth modulation signals are generated using a second mapping scheme. In the phase change processing, a phase change is performed on the plurality of second modulation signals and the plurality of fourth modulation signals using all N kinds of phases. In the transmission processing, the first modulation signals and the second modulation signals are respectively transmitted at a same frequency and a same time from different antennas, and the third modulation signals and the fourth modulation signals are respectively transmitted at a same frequency and a same time from the different antennas.
    Type: Application
    Filed: December 17, 2020
    Publication date: April 8, 2021
    Inventors: Yutaka MURAKAMI, Tomohiro KIMURA, Mikihiro OUCHI
  • Patent number: 10972163
    Abstract: A transmission method includes generating a first precoded signal and a second precoded signal by performing a precoding process on a first baseband signal and a second baseband signal, outputting a third signal by inserting a pilot signal into the first precoded signal, outputting a fourth signal by applying a first phase change to the second precoded signal, outputting a fifth signal by inserting a pilot signal into the fourth signal, and outputting a sixth signal by applying a second phase change to the fifth signal.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 6, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 10965354
    Abstract: Provided is a precoding method for generating, from a plurality of baseband signals, a plurality of precoded signals to be transmitted over the same frequency bandwidth at the same time, including the steps of selecting a matrix F[i] from among N matrices, which define precoding performed on the plurality of baseband signals, while switching between the N matrices, i being an integer from 0 to N?1, and N being an integer at least two, generating a first precoded signal z1 and a second precoded signal z2, generating a first encoded block and a second encoded block using a predetermined error correction block encoding method, generating a baseband signal with M symbols from the first encoded block and a baseband signal with M symbols the second encoded block, and precoding a combination of the generated baseband signals to generate a precoded signal having M slots.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: March 30, 2021
    Assignee: SUN PATENT TRUST
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 10965353
    Abstract: A transmission method simultaneously transmitting a first modulated signal and a second modulated signal at a common frequency performs precoding on both signals using a fixed precoding matrix and regularly changes the phase of at least one of the signals, thereby improving received data signal quality for a reception device.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: March 30, 2021
    Assignee: SUN PATENT TRUST
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 10958319
    Abstract: All data symbols used in data transmission of a modulated signal are precoded by switching between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol along the frequency axis and the time axis all differ. A modulated signal with such data symbols arranged therein is transmitted.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: March 23, 2021
    Assignee: SUN PATENT TRUST
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 10951294
    Abstract: A transmission apparatus includes M signal processors that respectively generate modulated signals directed to M reception apparatuses, M being an integer equal to or greater than 2, and an antenna section. Each signal processor modulates a first bit sequence made up of two bits to generate a first modulated signal and a second modulated signal, and modulates a second bit sequence made up of other two bits to generate a third modulated signal and a fourth modulated signal, in a case of transmitting multiple streams to a corresponding one of the M reception apparatuses. The antenna section includes a first antenna that transmits the first modulated signal and the third modulated signal and a second antenna that transmits the second modulated signal and the fourth modulated signal. At least either the signals transmitted from the first antenna or the signals transmitted from the second antenna are phase-changed signals.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: March 16, 2021
    Assignee: Panasonic Intellectual Property Corporation of America
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Publication number: 20210075655
    Abstract: A transmission device that improves data reception quality includes: a weighting synthesizer that generates a first precoded signal and a second precoded signal from a first baseband signal and a second baseband signal, respectively; a phase changer that applies a phase change of i×?? to the second precoded signal; an inserter that inserts a pilot signal into the second precoded signal applied with the phase change; and a phase changer that applies a phase change to the second precoded signal applied with the phase change and inserted with the pilot signal. ?? satisfies ?/2 radians<??<? radians or ? radians<??<3?/2 radians. Each of the first baseband signal and the second baseband signal is modulated via a modulation scheme of quadrature amplitude modulation (QAM) using non-uniform mapping.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 11, 2021
    Inventors: Yutaka MURAKAMI, Tomohiro KIMURA, Mikihiro OUCHI, Hiroyuki MOTOZUKA
  • Patent number: 10944526
    Abstract: A transmitting method includes: configuring a frame using a plurality of orthogonal frequency-division multiplexing (OFDM) symbols, by allocating time resources and frequency resources to a plurality of transmission data; and transmitting the frame, wherein the frame includes a first period in which a preamble which includes information on a frame configuration of the frame is transmitted, and a second period in which the plurality of transmission data are transmitted by at least one of time division and frequency division, and among the plurality of OFDM symbols, OFDM symbols included in the second period include pilot symbols arranged along a time axis with a predetermined spacing therebetween, and a predetermined number of data symbols.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: March 9, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Yutaka Murakami, Yoshio Urabe, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 10938457
    Abstract: Disclosed is a precoding method for generating, from a plurality of baseband signals, a plurality of precoded signals that are transmitted in the same frequency bandwidth at the same time. According to the precoding method, one matrix is selected from among matrices defining a precoding process that is performed on the plurality of baseband signals by hopping between the matrices. A first baseband signal and a second baseband signal relating to a first coded block and a second coded block generated by using a predetermined error correction block coding scheme satisfy a given condition.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: March 2, 2021
    Assignee: SUN PATENT TRUST
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Publication number: 20210058282
    Abstract: Provided is a transmission method that improves data reception quality in radio transmission using a single-carrier scheme and/or a multi-carrier scheme. The transmission method includes: generating a plurality of first modulated signals and a plurality of second modulated signals from transmission data, the plurality of first modulated signals being signals generated using a 16QAM modulation scheme, and the plurality of second modulated signals being signals generated using uniform constellation 64QAM modulation; generating, from the plurality of first modulated signals and the plurality of second modulated signals, a plurality of first signal-processed signals and a plurality of second signal-processed signals which satisfy a predetermined equation; and changing the predetermined equation when a 64QAM modulation used to generate the plurality of second modulated signals is switched from the uniform constellation 64QAM modulation to a non-uniform constellation 64QAM modulation.
    Type: Application
    Filed: November 6, 2020
    Publication date: February 25, 2021
    Inventors: Yutaka MURAKAMI, Tomohiro KIMURA, Mikihiro OUCHI
  • Patent number: 10931343
    Abstract: A transmitting device includes a plurality of transmission antennas, and includes: a signal processor which generates a first baseband signal by modulating data of a first stream, and a second baseband signal by modulating data of a second stream; and a transmitter which generates, from the first baseband signal, first transmission signals having different directivities, generates, from the second baseband signal, second transmission signals having different directivities, and transmits the first transmission signals and the second transmission signals at a same time.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: February 23, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Patent number: 10931494
    Abstract: An OFDM transmitter and an OFDM receiver respectively transmit and receive N (N?2, N is an integer) control symbols. For each control symbol, a guard interval time-domain signal is, for example, identical to a signal obtained by frequency-shifting at least a portion of a useful symbol time-domain signal by an amount different from any other symbol, or to a signal obtained by frequency-shifting one or both of a portion and a span of a useful symbol interval time-domain signal different from any other symbol by a predetermined amount.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 23, 2021
    Assignee: SUN PATENT TRUST
    Inventors: Yoshinobu Matsumura, Tomohiro Kimura, Mikihiro Ouchi
  • Publication number: 20210036747
    Abstract: Disclosed is a precoding method comprising the steps of: generating a first coded block and a second coded block with use of a predetermined error correction block coding scheme; generating a first precoded signal z1 and a second precoded signal z2 by performing a precoding process, which corresponds to a matrix selected from among the N matrices F[i], on a first baseband signal s1 generated from the first coded block and a second baseband signal s2 generated from the second coded block, respectively; the first precoded signal z1 and the second precoded signal z2 satisfying (z1, z2)T=F[i] (s1, s2)T; and changing both of or one of a power of the first precoded signal z1 and a power of the second precoded signal z2, such that an average power of the first precoded signal z1 is less than an average power of the second precoded signal z2.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 4, 2021
    Inventors: Yutaka MURAKAMI, Tomohiro KIMURA, Mikihiro OUCHI
  • Patent number: 10911278
    Abstract: A transmission method includes mapping processing, phase change processing, and transmission processing. In the mapping processing, a plurality of first modulation signals and a plurality of second modulation signals are generated using a first mapping scheme, and a plurality of third modulation signals and a plurality of fourth modulation signals are generated using a second mapping scheme. In the phase change processing, a phase change is performed on the plurality of second modulation signals and the plurality of fourth modulation signals using all N kinds of phases. In the transmission processing, the first modulation signals and the second modulation signals are respectively transmitted at a same frequency and a same time from different antennas, and the third modulation signals and the fourth modulation signals are respectively transmitted at a same frequency and a same time from the different antennas.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: February 2, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Yutaka Murakami, Tomohiro Kimura, Mikihiro Ouchi
  • Publication number: 20210013938
    Abstract: A signal generation method is used in a transmission device that transmits a plurality of transmission signals from a plurality of antennas at the same frequency and at the same time, in the case where larger power change is performed on a first transmission signal than on a second transmission signal during generation process of the first transmission signal and the second transmission signal, the first transmission signal and the second transmission signal are mapped before the power change such that a minimum Euclidian distance between possible signal points for the first signal is longer than a minimum Euclidian distance between possible signal points for the second signal.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 14, 2021
    Inventors: Yutaka MURAKAMI, Tomohiro KIMURA, Mikihiro OUCHI
  • Publication number: 20210013913
    Abstract: A transmission device includes a first mapper, a second mapper, a converter, a superposer, and a transmitter. The first mapper is configured to map a first bit stream of a first data series to generate a first modulated symbol stream. The second mapper is configured to map a second bit stream of a second data series to generate a second modulated symbol stream. The first modulated symbol stream and the second modulated symbol stream are representable on a complex plane extending in a first direction and a second direction. The converter is configured to convert the second modulated symbol stream in accordance with the first modulated symbol stream only in the first direction on the complex plane. The superposer is configured to superpose the first modulated symbol stream and the second modulated symbol stream converted by the converter, at an amplitude ratio, to generate a multiplexed signal.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventors: Tomohiro KIMURA, Mikihiro OUCHI