Patents by Inventor Mikihiro Takahashi

Mikihiro Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200287241
    Abstract: An additive for a non-aqueous electrolyte solution that can exhibit high-temperature cycle properties at 50° C. or more and low-temperature output properties at ?20° C. or less in a well-balanced manner for a non-aqueous electrolyte solution battery. The additive for a non-aqueous electrolyte solution is represented by formula [1], wherein Z1, Z2, Z3, Z4, Mp+ and p are as defined in the specification.
    Type: Application
    Filed: September 12, 2018
    Publication date: September 10, 2020
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi MORINAKA, Susumu IWASAKI, Keita NAKAHARA, Makoto KUBO, Mikihiro TAKAHASHI
  • Publication number: 20200136186
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises anon-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 30, 2020
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Makoto KUBO, Takayoshi MORINAKA, Mikihiro TAKAHASHI, Masutaka SHINMEN, Wataru KAWABATA, Hiroki MATSUZAKI
  • Publication number: 20200119400
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises a non-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 16, 2020
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Makoto KUBO, Takayoshi MORINAKA, Mikihiro TAKAHASHI, Masutaka SHINMEN, Wataru KAWABATA, Hiroki MATSUZAKI
  • Publication number: 20200115401
    Abstract: To provide a method for producing a phosphoryl imide salt represented by the following general formula (1) at a satisfactory yield by cation exchange. The method comprises the step of performing cation exchange by bringing a phosphoryl imide salt represented by the following general formula (2) into contact with a cation exchange resin having M1 n+ or a metal salt represented by the general formula (4) in an organic solvent having a water content of 0.3% by mass or less.
    Type: Application
    Filed: April 9, 2018
    Publication date: April 16, 2020
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Mikihiro TAKAHASHI, Takayoshi MORINAKA, Masutaka SHINMEN, Ryosuke TERADA
  • Patent number: 10553904
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises a non-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 4, 2020
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Makoto Kubo, Takayoshi Morinaka, Mikihiro Takahashi, Masutaka Shinmen, Wataru Kawabata, Hiroki Matsuzaki
  • Patent number: 10454139
    Abstract: An object of the present invention is to provide an electrolytic solution for nonaqueous electrolytic solution batteries capable of showing high output characteristics at low temperature even after the batteries are used to some extent, and a nonaqueous electrolytic solution batteries. The present invention is characterized in the use of an electrolytic solution for nonaqueous electrolytic solution batteries, the electrolytic solution including a difluoro ionic complex (1-Cis) in a cis configuration represented by the general formula (1-Cis), a nonaqueous organic solvent, and a solute. Furthermore, the electrolytic solution may contain a difluoro ionic complex (1-Trans) in a trans configuration or a tetrafluoro ionic complex (5).
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: October 22, 2019
    Assignee: Central Glass Co., Ltd.
    Inventors: Mikihiro Takahashi, Takayoshi Morinaka, Masutaka Shinmen, Wataru Kawabata, Makoto Kubo, Hiroki Matsuzaki, Shoichi Tsujioka, Kenta Yamamoto
  • Patent number: 10424794
    Abstract: To provide a material suitable for a nonaqueous electrolyte battery having high-temperature durability. An ionic complex of the present invention is represented by any of the following formulae (1) to (3). For example, in the formula (1), A is a metal ion, a proton, or an onium ion; M is any of groups 13 to 15 elements. R1 represents a C1 to C10 hydrocarbon group which may have a ring, a heteroatom, or a halogen atom, or —N(R2)—. R2 at this time represents hydrogen atom, alkali metal atom, a C1 to C10 hydrocarbon group which may have a ring, a heteroatom, or a halogen atom. R2 can also have a branched chain or a ring structure when the number of carbon atoms is 3 or more. Y is carbon atom or sulfur atom. a, o, n, p, q, and r are each predetermined integers.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 24, 2019
    Assignee: Central Glass Co., Ltd.
    Inventors: Mikihiro Takahashi, Takayoshi Morinaka, Masutaka Shinmen, Kenta Yamamoto, Wataru Kawabata, Makoto Kubo, Masataka Fujimoto, Hiroki Matsuzaki, Shoichi Tsujioka
  • Patent number: 10287165
    Abstract: Provided is a novel imidic acid compound having a divalent anion useful as a pharmaceutical intermediate, an agrochemical intermediate, an acid catalyst, a battery electrolyte or an antistatic agent. The imidic acid compound is a divalent imidic acid compound represented by the following general formula (1) or (2). [In formulae (1) and (2), R1 to R3 represent a fluorine atom or an organic groups selected from a linear or branched C1-10 alkoxy group, a C2-10 alkenyloxy group, a C2-10 alkynyloxy group, a C3-10 cycloalkoxy group, a C3-10 cycloalkenyloxy group and a C6-10 aryloxy group, and wherein a fluorine atom, an oxygen atom or an unsaturated bond may also be present in the organic group. M1 and M2 represent protons, metal cations or onium cations.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: May 14, 2019
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi Morinaka, Makoto Kubo, Wataru Kawabata, Kenta Yamamoto, Takashi Mori, Masutaka Shinmen, Hiroki Matsuzaki, Ryosuke Kondo, Mikihiro Takahashi
  • Patent number: 10211480
    Abstract: An electrolytic solution for a non-aqueous electrolyte battery is provided, which is capable of providing an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic at high temperatures of 45° C. or higher. For example, the electrolytic solution contains the following salt having a divalent imide anion. wherein R1 to R3 represent a fluorine atom or an alkoxy group, for example, and M1 and M2 represent protons or metal cations, for example.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 19, 2019
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi Morinaka, Makoto Kubo, Wataru Kawabata, Kenta Yamamoto, Mikihiro Takahashi
  • Patent number: 10186733
    Abstract: An object of the present invention is to provide a nonaqueous electrolytic solution and a nonaqueous electrolytic solution battery capable of showing high output characteristics at a low temperature even after the battery is used to some extent, and capable of showing good high-rate properties, and further capable of showing sufficient performance again at low temperature even after stored at a high temperature. The present invention is characterized in the use of a nonaqueous electrolytic solution containing a nonaqueous organic solvent and an electrolyte dissolved in the nonaqueous organic solvent, the nonaqueous electrolytic solution comprising a difluoro ionic complex (1-Cis) in a cis configuration represented by the general formula (1-Cis), and at least one compound selected from the group consisting of a carbonate having an unsaturated bond, a carbonate having a fluorine atom, an acid anhydride, and a compound having an isocyanato group.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: January 22, 2019
    Assignee: Central Glass Co., Ltd.
    Inventors: Katsutoshi Suzuki, Toru Tanaka, Mikihiro Takahashi, Kazunari Takeda
  • Publication number: 20190006713
    Abstract: Disclosed is an electrolyte solution for a nonaqueous electrolyte battery having an aluminum foil as a positive electrode current collector, which contains: a nonaqueous organic solvent; a fluorine-containing ionic salt as a solute; at least one kind selected from the group consisting of a fluorine-containing imide salt, a fluorine-containing sulfonic acid salt and a fluorine-containing phosphoric acid salt as an additive; and at least one kind selected from the group consisting of chloride ion and a chlorine-containing compound capable of forming chloride ion by charging, wherein the concentration of the component is 0.1 mass ppm to 500 mass ppm in terms of chlorine atom relative to the total amount of the components and. Even though the above additive component is contained, the electrolyte solution is able to suppress elution of aluminum from the aluminum foil as the positive electrode current collector during high-temperature charging.
    Type: Application
    Filed: October 12, 2016
    Publication date: January 3, 2019
    Inventors: Mikihiro TAKAHASHI, Takayoshi MORINAKA, Wataru KAWABATA, Toru TANAKA
  • Publication number: 20180375158
    Abstract: Provided is an electrolyte for a non-aqueous electrolyte battery, which can provide, when used in a non-aqueous electrolyte battery, in a good balance, an effect to suppress an increase in an internal resistance at a low temperature and an effect to suppress an increase in an amount of gas generated at a high temperature, as well as a non-aqueous electrolyte battery containing such an electrolyte. The non-aqueous electrolyte comprises a non-aqueous solvent and at least a hexafluorophosphate and/or tetrafluoroborate as a solute, and further comprises at least one imide anion-containing salt represented by the following general formula [1] but does not contain a silane compound represented by the following general formula [2] or an ionic complex represented by, for example, the following general formula [3].
    Type: Application
    Filed: December 22, 2016
    Publication date: December 27, 2018
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi MORINAKA, Makoto KUBO, Wataru KAWABATA, Masutaka SHINMEN, Hiroki MATSUZAKI, Mikihiro TAKAHASHI
  • Publication number: 20180241082
    Abstract: An object of the present invention is to provide a nonaqueous electrolytic solution and a nonaqueous electrolytic solution battery capable of showing high output characteristics at a low temperature even after the battery is used to some extent, and capable of showing good high-rate properties, and further capable of showing sufficient performance again at low temperature even after stored at a high temperature. The present invention is characterized in the use of a nonaqueous electrolytic solution containing a nonaqueous organic solvent and an electrolyte dissolved in the nonaqueous organic solvent, the nonaqueous electrolytic solution comprising a difluoro ionic complex (1-Cis) in a cis configuration represented by the general formula (1-Cis), and at least one compound selected from the group consisting of a carbonate having an unsaturated bond, a carbonate having a fluorine atom, an acid anhydride, and a compound having an isocyanato group.
    Type: Application
    Filed: December 28, 2015
    Publication date: August 23, 2018
    Applicant: Central Glass Company, Limited
    Inventors: Katsutoshi SUZUKI, Toru TANAKA, Mikihiro TAKAHASHI, Kazunari TAKEDA
  • Publication number: 20180062204
    Abstract: An object of the present invention is to provide an electrolytic solution for nonaqueous electrolytic solution batteries capable of showing high output characteristics at low temperature even after the batteries are used to some extent, and a nonaqueous electrolytic solution batteries. The present invention is characterized in the use of an electrolytic solution for nonaqueous electrolytic solution batteries, the electrolytic solution including a difluoro ionic complex (1-Cis) in a cis configuration represented by the general formula (1-Cis), a nonaqueous organic solvent, and a solute. Furthermore, the electrolytic solution may contain a difluoro ionic complex (1-Trans) in a trans configuration or a tetrafluoro ionic complex (5).
    Type: Application
    Filed: December 28, 2015
    Publication date: March 1, 2018
    Inventors: Mikihiro TAKAHASHI, Takayoshi MORINAKA, Masutaka SHINMEN, Wataru KAWABATA, Makoto KUBO, Hiroki MATSUZAKI, Shoichi TSUJIOKA, Kenta YAMAMOTO
  • Publication number: 20180034103
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises a non-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Application
    Filed: February 18, 2016
    Publication date: February 1, 2018
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Makoto KUBO, Takayoshi MORINAKA, Mikihiro TAKAHASHI, Masutaka SHINMEN, Wataru KAWABATA, Hiroki MATSUZAKI
  • Publication number: 20170331143
    Abstract: An electrolytic solution for a non-aqueous electrolyte battery is provided, which is capable of providing an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic at high temperatures of 45° C. or higher. For example, the electrolytic solution contains the following salt having a divalent imide anion. wherein R1 to R3 represent a fluorine atom or an alkoxy group, for example, and M1 and M2 represent protons or metal cations, for example.
    Type: Application
    Filed: December 1, 2015
    Publication date: November 16, 2017
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi MORINAKA, Makoto KUBO, Wataru KAWABATA, Kenta YAMAMOTO, Mikihiro TAKAHASHI
  • Publication number: 20170267528
    Abstract: Provided is a novel imidic acid compound having a divalent anion useful as a pharmaceutical intermediate, an agrochemical intermediate, an acid catalyst, a battery electrolyte or an antistatic agent. The imidic acid compound is a divalent imidic acid compound represented by the following general formula (1) or (2). [In formulae (1) and (2), R1 to R3 represent a fluorine atom or an organic groups selected from a linear or branched C1-10 alkoxy group, a C2-10 alkenyloxy group, a C2-10 alkynyloxy group, a C3-10 cycloalkoxy group, a C3-10 cycloalkenyloxy group and a C6-10 aryloxy group, and wherein a fluorine atom, an oxygen atom or an unsaturated bond may also be present in the organic group. M1 and M2 represent protons, metal cations or onium cations.
    Type: Application
    Filed: December 1, 2015
    Publication date: September 21, 2017
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi MORINAKA, Makoto KUBO, Wataru KAWABATA, Kenta YAMAMOTO, Takashi MORI, Masutaka SHINMEN, Hiroki MATSUZAKI, Ryosuke KONDO, Mikihiro TAKAHASHI
  • Publication number: 20170222264
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte solution battery capable of exhibiting excellent high-temperature cycle characteristics and excellent high-temperature storage characteristics at high temperature of 60° C. or above, and a non-aqueous electrolyte solution battery using the same. The electrolyte solution for a non-aqueous electrolyte solution battery of the present invention comprises at least: a non-aqueous solvent; a solute; at least one first compound represented by the following general formula (1); and at least one second compound represented by the following general formula (2).
    Type: Application
    Filed: July 10, 2015
    Publication date: August 3, 2017
    Inventors: Takayoshi MORINAKA, Makoto KUBO, Wataru KAWABATA, Kenta YAMAMOTO, Mikihiro TAKAHASHI
  • Publication number: 20170204124
    Abstract: To provide a material suitable for a nonaqueous electrolyte battery having high-temperature durability. An ionic complex of the present invention is represented by any of the following formulae (1) to (3). For example, in the formula (1), A is a metal ion, a proton, or an onium ion; M is any of groups 13 to 15 elements. R1 represents a C1 to C10 hydrocarbon group which may have a ring, a heteroatom, or a halogen atom, or —N(R2)—. R2 at this time represents hydrogen atom, alkali metal atom, a C1 to C10 hydrocarbon group which may have a ring, a heteroatom, or a halogen atom. R2 can also have a branched chain or a ring structure when the number of carbon atoms is 3 or more. Y is carbon atom or sulfur atom. a, o, n, p, q, and r are each predetermined integers.
    Type: Application
    Filed: June 30, 2015
    Publication date: July 20, 2017
    Applicant: Central Glass Company, Limited
    Inventors: Mikihiro TAKAHASHI, Takayoshi MORINAKA, Masutaka SHINMEN, Kenta YAMAMOTO, Wataru KAWABATA, Makoto KUBO, Masataka FUJIMOTO, Hiroki MATSUZAKI, Shoichi TSUJIOKA
  • Patent number: 8748653
    Abstract: Disclosed is a purification method of reducing and removing fluoride ions contained in an optically active ?-fluorocarboxylic acid ester represented by formula [1] [in the formula, R1 represents a C1-6 alkyl group, R2 represents a C1-4 alkyl group, and * represents an asymmetric carbon], the purification method of the optically active ?-fluorocarboxylic acid ester being characterized by that a distillation is conducted in the presence of an organic base. By this method, it is possible to greatly reduce the concentration of fluoride ion traces contained in the optically active ?-fluorocarboxylic acid ester by a relatively easy operation. Of the organic base, a tertiary amine is preferable, and above all tri-n-butylamine is particularly preferable.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: June 10, 2014
    Assignee: Central Glass Company, Limited
    Inventors: Akihiro Ishii, Hideyuki Tsuruta, Yuzuru Morino, Mikihiro Takahashi