Patents by Inventor Mikito Nagata

Mikito Nagata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9882247
    Abstract: A lithium ion battery particularly configured to be able to discharge to a very low voltage, e.g. zero volts, without causing permanent damage to the battery. More particularly, the battery is configured to define a Zero Volt Crossing Potential (ZCP) which is lower than a Damage Potential Threshold (DPT).
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: January 30, 2018
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Clay Kishiyama, Mikito Nagata, Hiroshi Nakahara, Tiehua Piao
  • Publication number: 20170125838
    Abstract: A lithium ion battery particularly configured to be able to discharge to a very low voltage, e.g. zero volts, without causing permanent damage to the battery. More particularly, the battery is configured to define a Zero Volt Crossing Potential (ZCP) which is lower than a Damage Potential Threshold (DPT).
    Type: Application
    Filed: September 16, 2013
    Publication date: May 4, 2017
    Inventors: Hisashi Tsukamoto, Clay Kishiyama, Mikito Nagata, Hiroshi Nakahara, Tiehua Piao
  • Patent number: 9331362
    Abstract: The battery includes an electrode having an active medium on a current collector. The active medium includes one or more active materials. The current collector includes or consists of carbon nanotubes. The electrical conductivity and weight of carbon nanotubes permit the weight of the battery to be reduced while the energy density and the power density of the battery are increased.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: May 3, 2016
    Assignee: Quallion LLC
    Inventors: Ryo Tamaki, Hisashi Tsukamoto, Mikito Nagata
  • Publication number: 20150074987
    Abstract: A lithium ion battery particularly configured to be able to discharge to a very low voltage, e.g. zero volts, without causing permanent damage to the battery. More particularly, the battery is configured to define a Zero Volt Crossing Potential (ZCP) which is lower than a Damage Potential Threshold (DPT).
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Inventors: Hisashi Tsukamoto, Clay Kishiyama, Mikito Nagata, Hiroshi Nakahara, Tiehua Piao
  • Publication number: 20140335415
    Abstract: The battery includes one or more electrodes that each has an active layer on a current collector. The active layer including active particles. The active particles include elongated particles embedded in an active medium such that at least a portion of the elongated particles each extends from within the active medium past a surface of the active medium.
    Type: Application
    Filed: April 18, 2011
    Publication date: November 13, 2014
    Inventors: Ryo Tamaki, Mikito Nagata, Hisashi Tsukamoto
  • Publication number: 20140335418
    Abstract: The battery includes an electrode having an active medium on a current collector. The active medium includes one or more active materials. The current collector includes or consists of carbon nanotubes. The electrical conductivity and weight of carbon nanotubes permit the weight of the battery to be reduced while the energy density and the power density of the battery are increased.
    Type: Application
    Filed: December 21, 2009
    Publication date: November 13, 2014
    Inventors: Ryo Tamaki, Hisashi Tsukamoto, Mikito Nagata
  • Patent number: 8715863
    Abstract: The battery includes an electrolyte activating one or more cathodes and one or more anodes. The electrolyte includes one or more salts in a solvent. The solvent includes one or more organic solvents and one or more silanes and/or one or more siloxanes.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: May 6, 2014
    Assignee: Quallion LLC
    Inventors: Zhengcheng Zhang, Phuong-Nghi Karen Lam, Mikito Nagata, Hisashi Tsukamoto
  • Patent number: 8697294
    Abstract: The battery includes a solid electrolyte activating a positive electrode and a negative electrode. The electrolyte is a solid including a lithium ion conductive glass-ceramic. The negative electrode includes a buffer layer between a negative medium and the electrolyte. The negative medium includes one or more primary negative active materials. The buffer layer includes one or more secondary negative active materials that do not dissolve the lithium ion conductive glass-ceramic. The secondary negative active materials can have a redox potential greater than 0.5 V vs Li/Li+.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: April 15, 2014
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Ryo Tamaki, Mikito Nagata, Hiroshi Nakahara
  • Patent number: 8679666
    Abstract: The battery pack includes a case that contains batteries and includes terminals through which power from the batteries can be accessed. The battery pack also includes a frame that defines battery receiving compartments that are each configured to receive one of the batteries with the frame immobilizing the position of each battery relative to the other batteries. The frame has a perimeter and at a portion of the frame perimeter serves as an outermost wall of the case.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: March 25, 2014
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Mikito Nagata, Michael Tomcsi, Aaron Castillo, Alex Pal, Joice Yi, Zarui Sara Chikneyan
  • Patent number: 8679677
    Abstract: The electrochemical device includes a composite electrode. The composite electrode has a working electrode that includes a current collector. A reference electrode is immobilized on the current collector. The reference electrode includes a reference active medium on a reference current collector. The reference current collector is electrically insulated from the current collector. A top surface of the reference electrode is substantially flush with a top surface of the working electrode. The top surface of the reference electrode is a surface of the reference electrode that is substantially parallel to the reference current collector.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 25, 2014
    Assignee: Quallion LLC
    Inventors: Ryo Tamaki, Mikito Nagata, Hisashi Tsukamoto
  • Patent number: 8637184
    Abstract: The battery includes a positive electrode having a first active material on a positive substrate. The first active material includes LiNixCo1-x-yMyO2 wherein M is chosen from the group consisting of Mn, Al, Mg, B, Ti, and Li, and wherein 0.5?x?1 and 0?y?0.3. The battery also includes a negative electrode having a second active material on a negative substrate. The second active material includes carbon. The negative electrode is susceptible to damage when a voltage exceeding a Damage Potential Threshold (DPT) is applied to the negative electrode. The DPT is lower than the maximum positive operating potential of the battery. The positive and negative electrodes define a Zero Volt Crossing Potential (ZCP) relative to a reference level when the voltage between the positive electrode and the negative electrode is zero. The positive electrode and the negative electrode are configured such that the value of the ZCP is less than the value of the DPT at a predetermined temperature.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: January 28, 2014
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Clay Kishiyama, Mikito Nagata, Hiroshi Nakahara, Tiehua Piao
  • Patent number: 8535831
    Abstract: A lithium ion battery particularly configured to be able to discharge to a very low voltage, e.g. zero volts, without causing permanent damage to the battery. More particularly, the battery is configured to define a Zero Volt Crossing Potential (ZCP) which is lower than a Damage Potential Threshold (DPT).
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: September 17, 2013
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Clay Kishiyama, Mikito Nagata, Hiroshi Nakahara, Tiehua Piao
  • Publication number: 20120171578
    Abstract: The battery includes an electrolyte activating one or more cathodes and one or more anodes. The electrolyte includes one or more salts in a solvent. The solvent includes one or more organic solvents and one or more silanes and/or one or more siloxanes.
    Type: Application
    Filed: March 22, 2007
    Publication date: July 5, 2012
    Inventors: Zhengcheng Zhang, Phuong-Nghi Karen Lam, Mikito Nagata, Hisashi Tsukamoto
  • Patent number: 7993781
    Abstract: A lithium ion battery particularly configured to be able to discharge to a very low voltage, e.g. zero volts, without causing permanent damage to the battery. More particularly, the battery is configured to define a Zero Volt Crossing Potential (ZCP) which is lower than a Substrate Dissolution Potential (SDP) to thus avoid low voltage substrate damage.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: August 9, 2011
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Clay Kishiyama, Mikito Nagata, Hiroshi Nakahara, Tiehua Piao
  • Patent number: 7947092
    Abstract: A battery includes an electrolyte activating one or more anodes and one or more cathodes. The electrolyte includes one or more salts in a solvent. One or more of the cathodes has a cathode medium that includes a lithium transition metal oxide as a cathode active material. The cathode medium also includes an inactive material that reacts with the electrolyte to form a passivation layer on the cathode medium. The passivation layer can include LiF. In some instances, the inactive material includes or consists of Li2CO3.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: May 24, 2011
    Assignee: Quallion LLC
    Inventors: Mikito Nagata, Hisashi Tsukamoto
  • Publication number: 20090169998
    Abstract: A lithium ion battery particularly configured to be able to discharge to a very low voltage, e.g. zero volts, without causing permanent damage to the battery. More particularly, the battery is configured to define a Zero Volt Crossing Potential (ZCP) which is lower than a Damage Potential Threshold (DPT).
    Type: Application
    Filed: October 25, 2007
    Publication date: July 2, 2009
    Inventors: Hisashi Tsukamoto, Clay Kishiyama, Mikito Nagata, Hiroshi Nakahara, Tiehua Piao
  • Patent number: 7488553
    Abstract: An electric storage battery and method of manufacture thereof characterized by a feed through pin (12) which is internally directly physically and electrically connected to an inner end of a positive electrode substrate (32). A C-shaped mandrel (48) extends around the pin and substrate end enabling the pin/mandrel to be used during the manufacturing process as an arbor to facilitate winding layers of a spiral jellyroll electrode assembly. The pin additionally extends from the battery case (101) and in the final product constitutes one of the battery terminals (14) with the battery case comprising the other terminal. The electrolyte is injected through the open end of the case after the end cap is welded to the negative electrode but before sealing the end cap to the case. The electrolyte is preferably injected through the C-shaped mandrel to facilitate and speed filling.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: February 10, 2009
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Andrew Szyszkowski, David M. Skinlo, Mikito Nagata, Hiroyuki Yumoto
  • Patent number: 7476468
    Abstract: The battery has an electrode assembly that includes one or more anodes and one or more cathodes. A first liquid phase is positioned in an active region of the electrode assembly. The first liquid phase includes one or more first flame retardants and an electrolyte. A second liquid phase is outside of the active region and in contact with the first liquid phase. The second liquid phase includes one or more second flame retardants. A third liquid phase is outside of the active region and in contact with the second liquid phase. The third liquid phase includes one or more third flame retardants. The first liquid phase and/or the electrolyte have a density between the second liquid phase and the third liquid phase.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: January 13, 2009
    Assignee: Quallion LLC
    Inventors: Phuong-Nghi Karen Lam, Mikito Nagata, Hisashi Tsukamoto
  • Patent number: 7416811
    Abstract: An electric storage battery and method of manufacture thereof. Active material (78) is removed from both sides of the outer end (88) of the negative electrode (70) in a jellyroll (84) to allow room for adhesive tape (96) to secure the jellyroll.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: August 26, 2008
    Assignee: Quallion LLC
    Inventors: Hiroshi Nakahara, Mikito Nagata, David M. Skinlo, Hisashi Tsukamoto, Hiroyuki Yumoto
  • Patent number: 7381494
    Abstract: An energy storage device, such as an electrical storage battery, having a unique terminal structure, sealing arrangement and an S-shaped mandrel for the electrode assembly. The battery generally includes a case in which an electrode assembly is dispose, and a cover provided with a fill hole and fill plug, and a terminal structure that forms a battery terminal. The terminal hole and the fill hole have counter bore structure to provide tighter sealing. A nickel layer is provided on the aluminum fill plug to facilitate electrical contact with the external circuit. A mandrel is provided for the rolled electrode assembly, and is electrically coupled to the terminal structure via a push-in tab inserted into a space in the S-shape of the mandrel.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: June 3, 2008
    Assignee: Quallion LLC
    Inventors: Wendy Fong, Mikito Nagata, Andrew Szyszkowski, Hisashi Tsukamoto