Patents by Inventor Mikko S. Komulainen

Mikko S. Komulainen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220221611
    Abstract: A circuit includes a sensing circuit for a first antenna and a second antenna, the sensing circuit including an adjustable characteristic that is based on a proximity of an object to the first or second antenna used to transmit a transmit signal. An evaluation circuit is coupled to the sensing circuit. The evaluation circuit is configured to monitor the characteristic of the sensing circuit and to determine whether the characteristic fulfills a predetermined criterion.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 14, 2022
    Inventors: Mikko S. Komulainen, Saku Lahti
  • Patent number: 11294089
    Abstract: A circuit includes a sensing circuit for a first antenna and a second antenna, the sensing circuit including an adjustable characteristic that is based on a proximity of an object to the first or second antenna used to transmit a transmit signal. An evaluation circuit is coupled to the sensing circuit. The evaluation circuit is configured to monitor the characteristic of the sensing circuit and to determine whether the characteristic fulfills a predetermined criterion.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: April 5, 2022
    Assignee: Apple Inc.
    Inventors: Mikko S. Komulainen, Saku Lahti
  • Patent number: 10840608
    Abstract: An antenna structure having a waveguide configured to operate as at least a portion of an antenna. Also, the waveguide may be configured to operate as a first antenna, and the waveguide has a hole configured to operate as a second antenna.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: November 17, 2020
    Assignee: Intel Corporation
    Inventors: Saku Lahti, Mikko S. Komulainen
  • Patent number: 10819009
    Abstract: Embodiments relate to systems, methods, and computer-readable media to enable a wireless communication device. In one embodiment a wireless communication device is configured to radiate a millimeter wave signal through a circular waveguide. A patch antenna is resonated in a Transverse Magnetic 1-0 (TM10) operating mode and electrically couples to an open end of the circular waveguide. The electric field pattern of the patch antenna is such that the millimeter wave signal is launched into the waveguide propagating in a Transverse Electric 1-1 (TE11) mode. In other embodiments, various other configurations may be used as described herein.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventors: Mikko S. Komulainen, Mikko M. Lampinen, Petri T. Mustonen, Saku Lahti
  • Patent number: 10819033
    Abstract: An apparatus of a user equipment (UE) to perform tuning of a tunable antenna may comprise baseband circuitry and radio frequency (RF) circuitry. The baseband circuitry may determine an indication of throughput performance of a tunable antenna for the UE while the tunable antenna is in a first state. The RF circuitry may select a second state for the tunable antenna based on the indication of throughput performance for the tunable antenna. The second state may be selected to improve throughput performance of a data stream for the UE. The RF circuitry may also generate a control signal to transition the tunable antenna to the second state.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: October 27, 2020
    Assignee: Apple Inc.
    Inventors: Mikko S. Komulainen, Saku Lahti, Petri T. Mustonen
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 10491026
    Abstract: Technology for impedance matching with a re-configurable coil arrangement of multiple transmitter coils of an electronic device is described. One electronic device includes a wireless transmitter coupled to a power supply and an impedance matching circuit coupled to output terminals of the wireless transmitter. First switching circuitry of the impedance matching circuit, in response to a first control signal, is to switch either a first transmitter coil or a first conductive path in series between the output terminals. Second switching circuitry of the impedance matching circuit, in response to a second control signal, is to switch either a second transmitter coil or a second conductive path in series between the output terminals. The first transmitter and first conductive path have the same impedance and the second transmitter and the second conductive path have the same impedance.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: November 26, 2019
    Assignee: Intel Corporation
    Inventors: Mikko S. Komulainen, Saku Lahti, Songnan Yang
  • Patent number: 10389159
    Abstract: A wireless charging system and a method for tuning the wireless charging system is described. The system can include matching circuitry coupled to a transmission coil and a controller coupled to the matching circuitry. The transmission coil can have a load inductance. The controller can control the matching circuitry to adjust a voltage associated with the capacitance value based on the load inductance to cause the voltage associated with the capacitance value and a current associated with the capacitance value to be in phase.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: August 20, 2019
    Assignee: Intel Corporation
    Inventors: Saku Lahti, Mikko S. Komulainen, Erkki Nokkonen
  • Publication number: 20190219720
    Abstract: A circuit includes a sensing circuit for a first antenna and a second antenna, the sensing circuit including an adjustable characteristic that is based on a proximity of an object to the first or second antenna used to transmit a transmit signal. An evaluation circuit is coupled to the sensing circuit. The evaluation circuit is configured to monitor the characteristic of the sensing circuit and to determine whether the characteristic fulfills a predetermined criterion.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 18, 2019
    Inventors: Mikko S. Komulainen, Saku Lahti
  • Patent number: 10203425
    Abstract: A circuit includes a sensing circuit for a first antenna and a second antenna, the sensing circuit including an adjustable characteristic that is based on a proximity of an object to the first or second antenna used to transmit a transmit signal. An evaluation circuit is coupled to the sensing circuit. The evaluation circuit is configured to monitor the characteristic of the sensing circuit and to determine whether the characteristic fulfills a predetermined criterion.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: February 12, 2019
    Assignee: Intel Corporation
    Inventors: Mikko S. Komulainen, Saku Lahti
  • Patent number: 10206021
    Abstract: A gas detection device includes an enclosure having an interior chamber, an audio loudspeaker in acoustic communication with the interior chamber of the enclosure, and a gas sensor configured to detect a gas within the interior chamber of the enclosure. The device may include a ventilation port configured to permit two-way gaseous communication between the interior chamber and an atmosphere external to the enclosure, where the atmosphere comprises the gas. The audio loudspeaker is configured to generate a pressure within the interior chamber. The pressure causes a portion of the external atmosphere to be drawn into the interior chamber via the ventilation port. The gas sensor may include an emitter and a receiver. The gas detection device can be integrated into a mobile electronic device, such as a smartphone or tablet computer.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 12, 2019
    Assignee: INTEL CORPORATION
    Inventors: Saku Lahti, Mikko S. Komulainen, Tapio Liusvaara
  • Patent number: 10148010
    Abstract: An antenna system includes an antenna having a symmetric geometry with respect to first and second antenna feed ports associated therewith, and a hybrid antenna feed circuit coupled to the first and second antenna feed ports of the antenna. The hybrid antenna feed circuit is configured to receive first and second transmit signals and feed the first transmit signal to the first and second antenna feed ports in a balanced feed mode and feed the second transmit signal to the first and second antenna feed ports in an unbalanced mode in a concurrent fashion.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 4, 2018
    Assignee: Intel Corporation
    Inventors: Saku Lahti, Mikko S. Komulainen
  • Publication number: 20180097394
    Abstract: A wireless charging system and a method for tuning the wireless charging system is described. The system can include matching circuitry coupled to a transmission coil and a controller coupled to the matching circuitry. The transmission coil can have a load inductance. The controller can control the matching circuitry to adjust a voltage associated with the capacitance value based on the load inductance to cause the voltage associated with the capacitance value and a current associated with the capacitance value to be in phase.
    Type: Application
    Filed: October 1, 2016
    Publication date: April 5, 2018
    Inventors: Saku Lahti, Mikko S. Komulainen, Erkki Nokkonen
  • Patent number: 9864087
    Abstract: A circuit includes a sensing circuit for a first antenna and a second antenna, the sensing circuit including an adjustable characteristic that is based on a proximity of an object to the first or second antenna used to transmit a transmit signal. An evaluation circuit is coupled to the sensing circuit. The evaluation circuit is configured to monitor the characteristic of the sensing circuit and to determine whether the characteristic fulfills a predetermined criterion.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: January 9, 2018
    Assignee: Intel Corporation
    Inventors: Mikko S. Komulainen, Saku Lahti
  • Publication number: 20170373398
    Abstract: An apparatus of a user equipment (UE) to perform tuning of a tunable antenna may comprise baseband circuitry and radio frequency (RF) circuitry. The baseband circuitry may determine an indication of throughput performance of a tunable antenna for the UE while the tunable antenna is in a first state. The RF circuitry may select a second state for the tunable antenna based on the indication of throughput performance for the tunable antenna. The second state may be selected to improve throughput performance of a data stream for the UE. The RF circuitry may also generate a control signal to transition the tunable antenna to the second state.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: Mikko S. Komulainen, Saku Lahti, Petri T. Mustonen
  • Publication number: 20170352944
    Abstract: Embodiments relate to systems, methods, and computer-readable media to enable a wireless communication device. In one embodiment a wireless communication device is configured to radiate a millimeter wave signal through a circular waveguide. A patch antenna is resonated in a Transverse Magnetic 1-0 (TM10) operating mode and electrically couples to an open end of the circular waveguide. The electric field pattern of the patch antenna is such that the millimeter wave signal is launched into the waveguide propagating in a Transverse Electric 1-1 (TE11) mode. In other embodiments, various other configurations may be used as described herein.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 7, 2017
    Inventors: MIKKO S. KOMULAINEN, MIKKO M. LAMPINEN, PETRI T. MUSTONEN, SAKU LAHTI