Patents by Inventor Mikko Vainio

Mikko Vainio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12239850
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: March 4, 2025
    Assignee: Siemens Healthineers International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 12090339
    Abstract: After accessing optimization information for a particular patient and for a particular radiation treatment platform, a control circuit generates an optimized radiation treatment plan by processing the optimization information using direct-aperture-optimization that includes fluence-based sub-optimization. By one approach, the control circuit includes the fluence-based sub-optimization in at least some, but not necessarily all, iterations of the direct-aperture-optimization. By one approach, the control circuit is configured to include only a few iterations of the fluence-based sub-optimization when including the fluence-based sub-optimization in at least some, but not necessarily all, iterations of the direct-aperture-optimization.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: September 17, 2024
    Assignee: Siemens Healthineers International AG
    Inventors: Jarkko Y. Peltola, Tuomas Tallinen, Mikko Vainio
  • Publication number: 20230256264
    Abstract: After accessing optimization information for a particular patient and for a particular radiation treatment platform, a control circuit generates an optimized radiation treatment plan by processing the optimization information using direct-aperture-optimization that includes fluence-based sub-optimization. By one approach, the control circuit includes the fluence-based sub-optimization in at least some, but not necessarily all, iterations of the direct-aperture-optimization. By one approach, the control circuit is configured to include only a few iterations of the fluence-based sub-optimization when including the fluence-based sub-optimization in at least some, but not necessarily all, iterations of the direct-aperture-optimization.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Jarkko Y. Peltola, Tuomas Tallinen, Mikko Vainio
  • Patent number: 11642550
    Abstract: After accessing optimization information for a particular patient and for a particular radiation treatment platform, a control circuit generates an optimized radiation treatment plan by processing the optimization information using direct-aperture-optimization that includes fluence-based sub-optimization. By one approach, the control circuit includes the fluence-based sub-optimization in at least some, but not necessarily all, iterations of the direct-aperture-optimization. By one approach, the control circuit is configured to include only a few iterations of the fluence-based sub-optimization when including the fluence-based sub-optimization in at least some, but not necessarily all, iterations of the direct-aperture-optimization.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: May 9, 2023
    Assignee: Varian Medical Systems International AG
    Inventors: Jarkko Y. Peltola, Tuomas Tallinen, Mikko Vainio
  • Publication number: 20230013729
    Abstract: New techniques are described herein for providing a user-friendly interface for adjusting dose distribution values during optimization of a radiation application plan. In an embodiment, a graphical user interface is provided that provides an image of a target area for a radiation application, and a graphical overlay of a dose distribution disposed over the target area that visually represents the optimized dose distribution according to the input dose parameters. In one or more embodiments, the dose distribution may be automatically calculated from input parameters supplied by a user through the graphical user interface prior to optimization. A user (such as a clinician, radiation oncologist, or radiation therapy operator, etc.) is able to modify the visualization of the dose distribution volume during optimization via a user input device in conjunction with the graphical user interface and have the modification adjusted in real-time.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 19, 2023
    Inventors: Risto AHONEN, Lauri HALKO, Jarkko Y. PELTOLA, Mikko VAINIO
  • Publication number: 20220305287
    Abstract: After accessing optimization information for a particular patient and for a particular radiation treatment platform, a control circuit generates an optimized radiation treatment plan by processing the optimization information using direct-aperture-optimization that includes fluence-based sub-optimization. By one approach, the control circuit includes the fluence-based sub-optimization in at least some, but not necessarily all, iterations of the direct-aperture-optimization. By one approach, the control circuit is configured to include only a few iterations of the fluence-based sub-optimization when including the fluence-based sub-optimization in at least some, but not necessarily all, iterations of the direct-aperture-optimization.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 29, 2022
    Inventors: Jarkko Y. Peltola, Tuomas Tallinen, Mikko Vainio
  • Patent number: 11449208
    Abstract: New techniques are described herein for providing a user-friendly interface for adjusting dose distribution values during optimization of a radiation application plan. In an embodiment, a graphical user interface is provided that provides an image of a target area for a radiation application, and a graphical overlay of a dose distribution disposed over the target area that visually represents the optimized dose distribution according to the input dose parameters. In one or more embodiments, the dose distribution may be automatically calculated from input parameters supplied by a user through the graphical user interface prior to optimization. A user (such as a clinician, radiation oncologist, or radiation therapy operator, etc.) is able to modify the visualization of the dose distribution volume during optimization via a user input device in conjunction with the graphical user interface and have the modification adjusted in real-time.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: September 20, 2022
    Assignee: Varian Medical Systems International AG
    Inventors: Risto Ahonen, Lauri Halko, Jarkko Y. Peltola, Mikko Vainio
  • Publication number: 20220176160
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Application
    Filed: February 23, 2022
    Publication date: June 9, 2022
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 11285339
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: March 29, 2022
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 11103726
    Abstract: Methods and systems are provided for developing radiation therapy treatment plans. A treatment template with radiation fields can be chosen for a patient based on a tumor location. Static radiation field positions can be adjusted for the patient, while arc radiation fields may remain the same. Static radiation field positions can be adjusted using dose gradient, historical patient data, and other techniques.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: August 31, 2021
    Assignee: Varian Medical Systems International AG
    Inventors: Jarkko Peltola, Janne Nord, Santtu Ollila, Mikko Vainio, Esa Kuusela
  • Patent number: 10857384
    Abstract: Streamlined and partially automated methods of setting normal tissue objectives in radiation treatment planning are provided. These methods may be applied to multiple-target cases as well as single-target cases. The methods can impose one or more target-specific dose falloff constraints around each target, taking into account geometric characteristics of each target such as target volume and shape. In some embodiments, methods can also take into account a planner's preferences for target dose homogeneity. In some embodiments, methods can generate additional dose falloff constraints in locations between two targets where dose bridging is likely to occur.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: December 8, 2020
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord
  • Publication number: 20200222720
    Abstract: Methods and systems are provided for developing radiation therapy treatment plans. A treatment template with radiation fields can be chosen for a patient based on a tumor location. Static radiation field positions can be adjusted for the patient, while arc radiation fields may remain the same. Static radiation field positions can be adjusted using dose gradient, historical patient data, and other techniques.
    Type: Application
    Filed: March 31, 2020
    Publication date: July 16, 2020
    Applicant: Varian Medical Systems International AG
    Inventors: Jarkko Peltola, Janne Nord, Santtu Ollila, Mikko Vainio, Esa Kuusela
  • Patent number: 10639501
    Abstract: Methods and systems are provided for developing radiation therapy treatment plans. A treatment template with radiation fields can be chosen for a patient based on a tumor location. Static radiation field positions can be adjusted for the patient, while arc radiation fields may remain the same. Static radiation field positions can be adjusted using dose gradient, historical patient data, and other techniques.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: May 5, 2020
    Assignee: Varian Medical Systems International AG
    Inventors: Jarkko Peltola, Janne Nord, Santtu Ollila, Mikko Vainio, Esa Kuusela
  • Patent number: 10449389
    Abstract: A method for determining MLC leaf sequences for radiation treatment includes obtaining BEV projections of a first target volume and a second target volume along one or more treatment paths of a radiation treatment plan, analyzing the BEV projections to determine one or more contiguous ranges of spatial points where there exists an interstitial region between the first target volume and the second target volume in the direction of MLC leaf motion, and determining a first set of MLC leaf sequences such that an aperture formed by the MLC in a first portion of the one or more contiguous ranges of spatial points exposes radiation to the first target volume but not the second target volume, and an aperture formed by the MLC in a second portion of the one or more contiguous ranges of spatial points exposes radiation to the second target volume but not the first target volume.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 22, 2019
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord
  • Publication number: 20190209863
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Applicant: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 10307615
    Abstract: An optimized radiation treatment plan may be developed in which the total monitor unit (MU) count is taken into account. A planner may specify a maximum treatment time. An optimization algorithm may convert the specified maximum treatment time to a maximum total MU count, which is then used as a constraint in the optimization process. A cost function for the optimization algorithm may include a term that penalizes any violation of the upper constraint for the MU count.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: June 4, 2019
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Patent number: 10272264
    Abstract: In a radiation treatment plan that includes a plurality of treatment fields of multiple treatment modalities, such as IMRT modality and dynamic treatment path modality (e.g., VMAT and conformal arc therapy), an optimized spatial point sequence may be determined that optimizes the total treatment time, which includes both the beam-on time (i.e., during the delivery of radiation dose) and the beam-off time (i.e., during transitions between consecutive treatment fields). The result is a time-ordered field trajectory that intermixes and interleaves different treatment fields. In one embodiment, a dynamic treatment path may be cut into a plurality of sections, and one or more IMRT fields may be inserted between the plurality of sections.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: April 30, 2019
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord, Esa Kuusela, Juha Kauppinen, Viljo Petäjä, Marko Rusanen
  • Publication number: 20190046815
    Abstract: Streamlined and partially automated methods of setting normal tissue objectives in radiation treatment planning are provided. These methods may be applied to multiple-target cases as well as single-target cases. The methods can impose one or more target-specific dose falloff constraints around each target, taking into account geometric characteristics of each target such as target volume and shape. In some embodiments, methods can also take into account a planner's preferences for target dose homogeneity. In some embodiments, methods can generate additional dose falloff constraints in locations between two targets where dose bridging is likely to occur.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Applicant: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord
  • Publication number: 20190012066
    Abstract: New techniques are described herein for providing a user-friendly interface for adjusting dose distribution values during optimization of a radiation application plan. In an embodiment, a graphical user interface is provided that provides an image of a target area for a radiation application, and a graphical overlay of a dose distribution disposed over the target area that visually represents the optimized dose distribution according to the input dose parameters. In one or more embodiments, the dose distribution may be automatically calculated from input parameters supplied by a user through the graphical user interface prior to optimization. A user (such as a clinician, radiation oncologist, or radiation therapy operator, etc.) is able to modify the visualization of the dose distribution volume during optimization via a user input device in conjunction with the graphical user interface and have the modification adjusted in real-time.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 10, 2019
    Inventors: Risto AHONEN, Lauri HALKO, Jarkko Y. PELTOLA, Mikko VAINIO
  • Patent number: 10143859
    Abstract: Streamlined and partially automated methods of setting normal tissue objectives in radiation treatment planning are provided. These methods may be applied to multiple-target cases as well as single-target cases. The methods can impose one or more target-specific dose falloff constraints around each target, taking into account geometric characteristics of each target such as target volume and shape. In some embodiments, methods can also take into account a planner's preferences for target dose homogeneity. In some embodiments, methods can generate additional dose falloff constraints in locations between two targets where dose bridging is likely to occur.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: December 4, 2018
    Assignee: Varian Medical Systems International AG
    Inventors: Santtu Ollila, Mikko Vainio, Jarkko Peltola, Janne Nord