Patents by Inventor Milap Jayesh Dalal

Milap Jayesh Dalal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9915532
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 13, 2018
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Publication number: 20160370183
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Application
    Filed: May 20, 2016
    Publication date: December 22, 2016
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Patent number: 9347775
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 24, 2016
    Assignee: Georgia Tech Research Corporation
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Patent number: 8763441
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 1, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang-Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Publication number: 20140157896
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Publication number: 20130125614
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Application
    Filed: April 11, 2012
    Publication date: May 23, 2013
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi