Patents by Inventor Milenko Cvetinovic

Milenko Cvetinovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180333558
    Abstract: Systems and methods for managing sleep quality of a patient, comprising: collecting physiological signal data of the patient using a data acquisition unit electrically coupled to at least one sensor affixed to the patient that generates the physiologic signal data; using one or more hardware processors executing instructions stored in a storage device: filtering the physiological signal data into a plurality of frequency bands corresponding to a plurality of power spectra waveforms; and characterizing an etiology of sleep quality of the patient based on a comparison of at least a first power spectra waveform of the plurality of power spectra waveforms against at least a second power spectra waveform of the plurality of power spectra waveforms, wherein the sleep quality of the patient is managed based on the characterized etiology of sleep.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 22, 2018
    Inventors: Daniel J. Levendowski, Bratislav Veljkovic, Amy Matthews, Vladislav Velimirovic, Elise Ramos Angel, Christine Berka, Gene Davis, Aleksandar Zoranovic, Milenko Cvetinovic, Philip R. Westbrook
  • Patent number: 8721555
    Abstract: Photoplethysmography (PPG) is obtained using one red (e.g., 660 nm) and one infrared (e.g., 880 to 940 nm) light emitting diode with a single photo diode in combination with a pressure transducer thereby allowing both CVP and SpO2 to be measured simultaneously. The system also includes sensors capable of measuring position, angle and/or movement of the sensor or patient. Once the PPG signal is acquired, high pass adaptive and/or notch filtering can be used with one element of the filter from the red and infrared signals used to measure the arterial changes needed to compute SpO2 and the other element of the signal can be used to measure CVP changes.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 13, 2014
    Assignee: Watermark Medical, Inc.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Timothy Zavora, Djordje Popovic, Milenko Cvetinovic, Chris Berka
  • Publication number: 20100145201
    Abstract: Photoplethysmography (PPG) is obtained using one red (e.g., 660 nm) and one infrared (e.g., 880 to 940 nm) light emitting diode with a single photo diode in combination with a pressure transducer thereby allowing both CVP and SpO2 to be measured simultaneously. The system also includes sensors capable of measuring position, angle and/or movement of the sensor or patient. Once the PPG signal is acquired, high pass adaptive and/or notch filtering can be used with one element of the filter from the red and infrared signals used to measure the arterial changes needed to compute SpO2 and the other element of the signal can be used to measure CVP changes.
    Type: Application
    Filed: February 18, 2010
    Publication date: June 10, 2010
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Timothy Zavora, Djordje Popovic, Milenko Cvetinovic, Chris Berka
  • Patent number: 7691067
    Abstract: Photoplethysmography (PPG) is obtained using one red (e.g., 660 nm) and one infrared (e.g., 880 to 940 nm) light emitting diode with a single photo diode in combination with a pressure transducer thereby allowing both CVP and SpO2 to be measured simultaneously. The system also includes sensors capable of measuring position, angle and/or movement of the sensor or patient. Once the PPG signal is acquired, high pass adaptive and/or notch filtering can be used with one element of the filter from the red and infrared signals used to measure the arterial changes needed to compute SpO2 and the other element of the signal can be used to measure CVP changes.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: April 6, 2010
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Timothy Zavora, Djordje Popovic, Milenko Cvetinovic, Chris Berka
  • Publication number: 20080081961
    Abstract: Photoplethysmography (PPG) is obtained using one red (e.g., 660 nm) and one infrared (e.g., 880 to 940 nm) light emitting diode with a single photo diode in combination with a pressure transducer thereby allowing both CVP and SpO2 to be measured simultaneously. The system also includes sensors capable of measuring position, angle and/or movement of the sensor or patient. Once the PPG signal is acquired, high pass adaptive and/or notch filtering can be used with one element of the filter from the red and infrared signals used to measure the arterial changes needed to compute SpO2 and the other element of the signal can be used to measure CVP changes.
    Type: Application
    Filed: June 14, 2007
    Publication date: April 3, 2008
    Inventors: Philip Westbrook, Daniel Levendowski, Timothy Zavora, Djordje Popovic, Milenko Cvetinovic, Chris Berka
  • Patent number: 7297119
    Abstract: In a technique for collecting and analyzing physiological signals to detect sleep apnea, a small light-weight physiological monitoring system, affixed to a patient's forehead, detects and records the pulse, oximetry, snoring sounds, and head position of a patient to detect a respiratory event, such as sleep apnea. The physiological monitoring system may contain several sensors including a pulse oximeter to detect oximetry and pulse rate, a microphone to detect snoring sounds, and a position sensor to detect head position. The physiological monitoring system also can contain a memory to store or record the signals monitored by the mentioned sensors and a power source. The physiological monitoring system may be held in place by a single elastic strap, thereby enabling a patient to use the system without the assistance of trained technicians.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: November 20, 2007
    Assignee: Ares Medical, Inc.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Milenko Cvetinovic, Chris Berka, Yury Furman
  • Patent number: 6985034
    Abstract: The main difference between the boost bridge amplifier according to this invention and state of the art class D amplifiers is in the connection of a load between a power supply and a switching bridge which is supplied from a bridge capacitor. The switching bridge operation is controlled by the pulse-width modulated control signals. Thereby, it is possible to completely eliminate both input and output filters, which are required in state of the art class D amplifiers. It is also possible to achieve several times higher power at the load, due to the additional switching bridge supply from the bridge capacitor. Conducted and radiated EMI noise is significantly reduced in comparison with state of the art class D amplifiers. This embodiment provides a low price, small size and low EMI noise level.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: January 10, 2006
    Inventors: Milan Prokin, Milenko Cvetinovic
  • Publication number: 20050027207
    Abstract: In a technique for collecting and analyzing physiological signals to detect sleep apnea, a small light-weight physiological monitoring system, affixed to a patient's forehead, detects and records the pulse, oximetry, snoring sounds, and head position of a patient to detect a respiratory event, such as sleep apnea. The physiological monitoring system may contain several sensors including a pulse oximeter to detect oximetry and pulse rate, a microphone to detect snoring sounds, and a position sensor to detect head position. The physiological monitoring system also can contain a memory to store or record the signals monitored by the mentioned sensors and a power source. The physiological monitoring system may be held in place by a single elastic strap, thereby enabling a patient to use the system without the assistance of trained technicians.
    Type: Application
    Filed: August 25, 2004
    Publication date: February 3, 2005
    Inventors: Philip Westbrook, Daniel Levendowski, Milenko Cvetinovic, Chris Berka, Yury Furman
  • Patent number: 6811538
    Abstract: In a technique for collecting and analyzing physiological signals to detect sleep apnea, a small light-weight physiological monitoring system, affixed to a patient's forehead, detects and records the pulse, oximetry, snoring sounds, and head position of a patient to detect a respiratory event, such as sleep apnea. The physiological monitoring system may contain several sensors including a pulse oximeter to detect oximetry and pulse rate, a microphone to detect snoring sounds, and a position sensor to detect head position. The physiological monitoring system also can contain a memory to store or record the signals monitored by the mentioned sensors and a power source. The physiological monitoring system may be held in place by a single elastic strap, thereby enabling a patient to use the system without the assistance of trained technicians.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: November 2, 2004
    Assignee: Ares Medical, Inc.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Milenko Cvetinovic, Chris Berka, Yury Furman
  • Patent number: 6646507
    Abstract: The main difference between the power booster amplifier according to this invention and state of the art class D amplifiers is in the connection of a load between a power supply and a switching half bridge which is supplied from a bridge capacitor. The switching half bridge operation is controlled by pulse-width modulated control signals. Thereby, it is possible to completely eliminate both input and output filters which are required in state of the art class D amplifiers. It is also possible to achieve several times higher power at the load due to the additional supply from the bridge capacitor for the switching half bridge. The conducted and radiated EMI noise is significantly reduced in comparison with state of the art class D amplifiers. This embodiment provides a low price, small size and low EMI noise level.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: November 11, 2003
    Inventors: Milan Prokin, Milenko Cvetinovic
  • Publication number: 20020165462
    Abstract: In a technique for collecting and analyzing physiological signals to detect sleep apnea, a small light-weight physiological monitoring system, affixed to a patient's forehead, detects and records the pulse, oximetry, snoring sounds, and head position of a patient to detect a respiratory event, such as sleep apnea. The physiological monitoring system may contain several sensors including a pulse oximeter to detect oximetry and pulse rate, a microphone to detect snoring sounds, and a position sensor to detect head position. The physiological monitoring system also can contain a memory to store or record the signals monitored by the mentioned sensors and a power source. The physiological monitoring system may be held in place by a single elastic strap, thereby enabling a patient to use the system without the assistance of trained technicians.
    Type: Application
    Filed: December 28, 2001
    Publication date: November 7, 2002
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Milenko Cvetinovic, Chris Berka, Yury Furman