Patents by Inventor Milesh PATEL

Milesh PATEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200291464
    Abstract: This disclosure relates to a method for increasing the hybridization efficiency of a probe and a target RNA in a sample, for example to identify a particular RNA present in the sample. The method includes heating a lysate sample comprising at least one target RNA, such as a tRNA, mRNA or rRNA, at a temperature of about 95° C. for a time sufficient to interfere with secondary structure of the RNA, wherein the time is short enough, such that the RNA in the cell lysate sample are not significantly degraded, and wherein the lysate comprises a cell lysis buffer comprising a chemical denaturant. To detect a target RNA in the lysate, the lysate is contacted with at least one detectable probe, such as a labeled probe, designed to specifically hybridize to the target RNA in the lysate.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 17, 2020
    Inventors: Roby Bhattacharyya, Deborah Hung, Milesh Patel
  • Publication number: 20190144930
    Abstract: This disclosure relates to a method for increasing the hybridization efficiency of a probe and a target RNA in a sample, for example to identify a particular RNA present in the sample. The method includes heating a lysate sample comprising at least one target RNA, such as a tRNA, mRNA or rRNA, at a temperature of about 95° C. for a time sufficient to interfere with secondary structure of the RNA, wherein the time is short enough, such that the RNA in the cell lysate sample are not significantly degraded, and wherein the lysate comprises a cell lysis buffer comprising a chemical denaturant. To detect a target RNA in the lysate, the lysate is contacted with at least one detectable probe, such as a labeled probe, designed to specifically hybridize to the target RNA in the lysate.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Inventors: Roby BHATTACHARYYA, Deborah HUNG, Milesh PATEL
  • Patent number: 10253353
    Abstract: This disclosure relates to a method for increasing the hybridization efficiency of a probe and a target RNA in a sample, for example to identify a particular RNA present in the sample. The method includes heating a lysate sample comprising at least one target RNA, such as a tRNA, mRNA or rRNA, at a temperature of about 95° C. for a time sufficient to interfere with secondary structure of the RNA, wherein the time is short enough, such that the RNA in the cell lysate sample are not significantly degraded, and wherein the lysate comprises a cell lysis buffer comprising a chemical denaturant. To detect a target RNA in the lysate, the lysate is contacted with at least one detectable probe, such as a labeled probe, designed to specifically hybridize to the target RNA in the lysate.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 9, 2019
    Assignees: The Broad Institute, Inc., The General Hospital Corporation
    Inventors: Roby Bhattacharyya, Deborah Hung, Milesh Patel
  • Publication number: 20160304942
    Abstract: This disclosure relates to a method for increasing the hybridization efficiency of a probe and a target RNA in a sample, for example to identify a particular RNA present in the sample. The method includes heating a lysate sample comprising at least one target RNA, such as a tRNA, mRNA or rRNA, at a temperature of about 95° C. for a time sufficient to interfere with secondary structure of the RNA, wherein the time is short enough, such that the RNA in the cell lysate sample are not significantly degraded, and wherein the lysate comprises a cell lysis buffer comprising a chemical denaturant. To detect a target RNA in the lysate, the lysate is contacted with at least one detectable probe, such as a labeled probe, designed to specifically hybridize to the target RNA in the lysate.
    Type: Application
    Filed: December 5, 2014
    Publication date: October 20, 2016
    Inventors: Roby BHATTACHARYYA, Deb HUNG, Milesh PATEL