Patents by Inventor Miloslav Uher

Miloslav Uher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9053854
    Abstract: A capacitor for use in ultrahigh voltage environments is provided. During formation of the capacitor, the forming voltage employed during anodization is generally about 300 volts or more and at temperatures ranging from about 10° C. to about 70° C. Such conditions can substantially improve the quality and thickness of the dielectric without adversely impacting the uniformity and consistency of its surface coverage. In addition, the solid electrolyte is also formed from a dispersion of preformed conductive polymer particles. In this manner, the electrolyte may remain generally free of high energy radicals (e.g., Fe2+ or Fe3+ ions) that can lead to dielectric degradation, particularly at the ultrahigh voltages noted above.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: June 9, 2015
    Assignee: AVX Corporation
    Inventors: Jan Petrzilek, Miloslav Uher, Tomas Karnik
  • Patent number: 8848342
    Abstract: A solid electrolytic capacitor capable of exhibiting stable electrical properties is provided. The capacitor contains an oxidized anode and a conductive polymer coating overlying the anode. The conductive polymer coating contains multiple layers formed from a dispersion of pre-polymerized conductive polymer particles. The present inventors have surprisingly discovered that capacitors formed from such conductive polymer dispersions can operate at high voltages and achieve good electrical performance at relatively high humidity and/or temperature levels and that the problem of layer delamination may be overcome by carefully controlling the conductive polymer coating configuration and the manner in which it is formed.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: September 30, 2014
    Assignee: AVX Corporation
    Inventors: Miloslav Uher, Jan Petrzilek
  • Patent number: 8780531
    Abstract: An integrated capacitor assembly that contains at least two solid electrolytic capacitor elements electrically connected to common anode and cathode terminations is provided. The capacitor elements contain an anode, a dielectric coating overlying the anode that is formed by anodic oxidation, and a conductive polymer solid electrolyte overlying the dielectric layer. The capacitor elements are spaced apart from each other a certain distance such that a resinous material can fill the space between the elements. In this manner, the present inventors believe that the resinous material can limit the expansion of the conductive polymer layer to such an extent that it does not substantially delaminate from the capacitor element. In addition to possessing mechanical stability, the capacitor assembly also possesses a combination of good electrical properties, such as low ESR, high capacitance, and a high dielectric breakdown voltage.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 15, 2014
    Assignee: AVX Corporation
    Inventors: Jan Petrzilek, Miloslav Uher, Lotfi Djebara
  • Publication number: 20130229751
    Abstract: A capacitor for use in ultrahigh voltage environments is provided. During formation of the capacitor, the forming voltage employed during anodization is generally about 300 volts or more and at temperatures ranging from about 10° C. to about 70° C. Such conditions can substantially improve the quality and thickness of the dielectric without adversely impacting the uniformity and consistency of its surface coverage. In addition, the solid electrolyte is also formed from a dispersion of preformed conductive polymer particles. In this manner, the electrolyte may remain generally free of high energy radicals (e.g., Fe2+ or Fe3+ ions) that can lead to dielectric degradation, particularly at the ultrahigh voltages noted above.
    Type: Application
    Filed: February 22, 2013
    Publication date: September 5, 2013
    Applicant: AVX CORPORATION
    Inventors: Jan Petrzilek, Miloslav Uher, Tomas Karnik
  • Publication number: 20120327561
    Abstract: An integrated capacitor assembly that contains at least two solid electrolytic capacitor elements electrically connected to common anode and cathode terminations is provided. The capacitor elements contain an anode, a dielectric coating overlying the anode that is formed by anodic oxidation, and a conductive polymer solid electrolyte overlying the dielectric layer. The capacitor elements are spaced apart from each other a certain distance such that a resinous material can fill the space between the elements. In this manner, the present inventors believe that the resinous material can limit the expansion of the conductive polymer layer to such an extent that it does not substantially delaminate from the capacitor element. In addition to possessing mechanical stability, the capacitor assembly also possesses a combination of good electrical properties, such as low ESR, high capacitance, and a high dielectric breakdown voltage.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 27, 2012
    Applicant: AVX CORPORATION
    Inventors: Jan Petrzilek, Miloslav Uher, Lotfi Djebara
  • Patent number: 8259436
    Abstract: An integrated capacitor assembly that contains at least two solid electrolytic capacitor elements electrically connected to common anode and cathode terminations is provided. The capacitor elements contain an anode, a dielectric coating overlying the anode that is formed by anodic oxidation, and a conductive polymer solid electrolyte overlying the dielectric layer. The capacitor elements are spaced apart from each other a certain distance such that a resinous material can fill the space between the elements. In this manner, the present inventors believe that the resinous material can limit the expansion of the conductive polymer layer to such an extent that it does not substantially delaminate from the capacitor element. In addition to possessing mechanical stability, the capacitor assembly also possesses a combination of good electrical properties, such as low ESR, high capacitance, and a high dielectric breakdown voltage.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: September 4, 2012
    Assignee: AVX Corporation
    Inventors: Jan Petrzilek, Miloslav Uher, Lotfi Djebara
  • Publication number: 20120134073
    Abstract: A solid electrolytic capacitor that is capable of exhibiting stable electrical properties (e.g., leakage current and ESR) in a wide variety of operational conditions is provided. The capacitor contains an oxidized anode body and a conductive polymer coating overlying the anode body. The conductive polymer coating contains multiple layers formed from a dispersion of pre-polymerized conductive polymer particles. Unlike conventional attempts, the present inventors have surprisingly discovered that capacitors formed from such conductive polymer dispersions can operate at high voltages, and also achieve good electrical performance at relatively high humidity and/or temperature levels. More particularly, the present inventors have discovered that the problem of layer delamination may be overcome by carefully controlling the configuration of the conductive polymer coating and the manner in which it is formed. Namely, the coating contains a first layer that only partially covers the anode body.
    Type: Application
    Filed: August 30, 2011
    Publication date: May 31, 2012
    Applicant: AVX CORPORATION
    Inventors: Miloslav Uher, Jan Petrzilek
  • Publication number: 20120033349
    Abstract: An integrated capacitor assembly that contains at least two solid electrolytic capacitor elements electrically connected to common anode and cathode terminations is provided. The capacitor elements contain an anode, a dielectric coating overlying the anode that is formed by anodic oxidation, and a conductive polymer solid electrolyte overlying the dielectric layer. The capacitor elements are spaced apart from each other a certain distance such that a resinous material can fill the space between the elements. In this manner, the present inventors believe that the resinous material can limit the expansion of the conductive polymer layer to such an extent that it does not substantially delaminate from the capacitor element. In addition to possessing mechanical stability, the capacitor assembly also possesses a combination of good electrical properties, such as low ESR, high capacitance, and a high dielectric breakdown voltage.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 9, 2012
    Applicant: AVX CORPORATION
    Inventors: Jan Petrzilek, Miloslav Uher, Lotfi Djebara