Patents by Inventor Milton B. Yatvin

Milton B. Yatvin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090123530
    Abstract: This invention comprises pharmaceutical compositions for administering a biologically active compound to an animal. Particularly provided are proliposomal compositions that are advantageously used to deliver biologically active compounds to the gastrointestinal tract after oral administration.
    Type: Application
    Filed: June 9, 2008
    Publication date: May 14, 2009
    Inventors: Guru V. Betageri, Milton B. Yatvin
  • Patent number: 7387791
    Abstract: This invention comprises pharmaceutical compositions for administering a biologically active compound to an animal. Particularly provided are proliposomal compositions that are advantageously used to deliver biologically active compounds to the gastrointestinal tract after oral administration.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: June 17, 2008
    Assignee: Oradel Medical Ltd.
    Inventors: Guru V. Betageri, Milton B. Yatvin
  • Patent number: 7045543
    Abstract: This invention herein describes a method of facilitating the entry of drugs into cells and tissues at physiologically protected sites at pharmacokinetically useful levels and also a method of targeting drugs to physiologically protected sites in vivo. Also provided are drug conjugates with an amino acid or derivative thereof for facilitating such targeted drug delivery. The conjugates and methods of this invention provide an advance over other drug targeting methods known in the prior art, because the invention provides drug concentrations in such physiologically protected sites that can reach therapeutically-effective levels after administration of systemic levels much lower than are currently administered to achieve a therapeutic dose. This technology is appropriate for use with psychotropic, neurotropic, neurological, antibiotic, antibacterial, antimycotic, antiviral, antiproliferative or antineoplastic drugs, agents and conjugates, for rapid and efficient introduction of such agents across, e.g.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: May 16, 2006
    Assignee: EnzRel Inc.
    Inventors: Milton B. Yatvin, Richard L. Pederson
  • Patent number: 6858582
    Abstract: Methods and reagents are provided for specifically targeting biologically active compounds such as antiviral and antimicrobial drugs, or prodrugs containing the biologically active compound to specific sites such as specific organelles in phagocytic mammalian cells. The biologically active compound or prodrug is linked to a microparticle with a linker that is non-specifically or specifically cleaved inside a phagocytic mammalian cell. Alternatively, the biologically active compound or prodrug is impregnated into a porous microparticle or coated on a nonporous microparticle, and then coated with a coating material that is non-specifically or specifically degraded inside a phagocytic mammalian cell. The prodrug contains the biologically active compound linked to a polar lipid such as ceramide with a specific linker such as a peptide that is specifically cleaved to activate the prodrug in a phagocytic mammalian cell infected with a microorganism.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: February 22, 2005
    Assignee: Oregon Health and Sciences University
    Inventors: Milton B. Yatvin, Michael HB Stowell, Vincent S. Gallicchio, Michael J. Meredith
  • Publication number: 20040224918
    Abstract: This invention provides compositions of matter, pharmaceutical compounds, methods of synthesizing such compounds and methods for using such compounds to treat animals infected with a pathogenic mycobacterium. The invention specifically provides compositions and pharmaceutical compositions thereof for the treatment of tuberculosis and other Mycobacterium-caused diseases.
    Type: Application
    Filed: February 10, 2004
    Publication date: November 11, 2004
    Inventors: Milton B. Yatvin, Richard L. Pederson
  • Patent number: 6761901
    Abstract: This invention comprises pharmaceutical compositions for administering a biologically active compound to an animal. Particularly provided are proliposomal compositions that are advantageously used to deliver biologically active compounds to the gastrointestinal tract after oral administration.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: July 13, 2004
    Assignee: EnzRel Inc.
    Inventors: Guru V. Betageri, Milton B. Yatvin
  • Publication number: 20040127506
    Abstract: This invention provides compositions of matter, pharmaceutical compounds, methods of synthesizing such compounds and methods for using such compounds to treat animals infected with a pathogenic mycobacterium. The invention specifically provides compositions and pharmaceutical compositions thereof for the treatment of tuberculosis and other Mycobacterium-caused diseases.
    Type: Application
    Filed: December 16, 2003
    Publication date: July 1, 2004
    Inventors: Milton B. Yatvin, Richard L. Pederson
  • Publication number: 20040087482
    Abstract: This invention provides methods and reagents for specifically delivering biologically active compounds to phagocytic mammalian cells. The invention also relates to specific uptake of such biologically active compounds by phagocytic cells and delivery of such compounds to specific sites intracellularly. The invention specifically relates to methods of facilitating the entry of antimicrobial drugs and other agents into phagocytic cells and for targeting such compounds to specific organelles within the cell. The invention specifically provides compositions of matter and pharmaceutical embodiments of such compositions comprising conjugates of such antimicrobial drugs and agents covalently linked to particulate carriers generally termed microparticles. Alternative embodiments of such specific drug delivery compositions also contain polar lipid carrier molecules effective in achieving intracellular organelle targeting in infected phagocytic mammalian cells.
    Type: Application
    Filed: January 15, 2002
    Publication date: May 6, 2004
    Applicant: Oregon Health and Sciences University
    Inventors: Milton B. Yatvin, Michael HB Stowell, Vincent S. Gallicchio, Michael J. Meredith
  • Patent number: 6689760
    Abstract: This invention provides compositions of matter, pharmaceutical compounds, methods of synthesizing such compounds and methods for using such compounds to treat animals infected with a pathogenic mycobacterium. The invention specifically provides compositions and pharmaceutical compositions thereof for the treatment of tuberculosis and other Mycobacterium-caused diseases.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: February 10, 2004
    Assignee: EnzRel Inc.
    Inventors: Milton B. Yatvin, Richard L. Pederson
  • Patent number: 6676972
    Abstract: This invention provides reagents and methods for specifically delivering antibiotic, antimicrobial and antiviral compounds, drugs and agents to phagocytic mammalian cells. The invention also relates to specific delivery to and uptake of such compounds by phagocytic cells. The invention specifically relates to reagents and methods for facilitating the entry of antibiotic, antimicrobial and antiviral compounds, drugs and agents into phagocytic cells. The invention specifically provides compositions of matter and pharmaceutical embodiments of such compositions comprising such antibiotic, antimicrobial or antiviral compounds, drugs and agents conjugated to, impregnated with or coated onto particulate carriers generally termed microparticles. In particular embodiments, the antibiotic, antimicrobial and antiviral compounds, drugs and agents are covalently linked to a microparticle via a specifically-degradable linker molecule which is the target of a microorganism-specific protein having enzymatic activity.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: January 13, 2004
    Assignee: Oregon Health and Science University
    Inventors: Michael J. Meredith, Milton B. Yatvin, Richard L. Pederson
  • Patent number: 6664257
    Abstract: This invention provides compositions of matter, pharmaceutical compounds, methods of synthesizing such compounds and methods for using such compounds to treat animals infected with a pathogenic mycobacterium. The invention specifically provides compositions and pharmaceutical compositions thereof for the treatment of tuberculosis and other Mycobacterium-caused diseases.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: December 16, 2003
    Assignee: EnzRel Inc.
    Inventors: Milton B. Yatvin, Richard L. Pederson
  • Publication number: 20030100569
    Abstract: This invention provides compositions of matter, pharmaceutical compounds, methods of synthesizing such compounds and methods for using such compounds to treat animals infected with a pathogenic mycobacterium. The invention specifically provides compositions and pharmaceutical compositions thereof for the treatment of tuberculosis and other Mycobacterium-caused diseases.
    Type: Application
    Filed: November 5, 2001
    Publication date: May 29, 2003
    Inventors: Milton B. Yatvin, Richard L. Pederson
  • Publication number: 20030087803
    Abstract: This invention herein describes a method of facilitating the entry of drugs into cells and tissues at physiologically protected sites at pharmacokinetically useful levels and also a method of targeting drugs to physiologically protected sites in vivo. Also provided are drug conjugates with an amino acid or derivative thereof for facilitating such targeted drug delivery. The conjugates and methods of this invention provide an advance over other drug targeting methods known in the prior art, because the invention provides drug concentrations in such physiologically protected sites that can reach therapeutically-effective levels after administration of systemic levels much lower than are currently administered to achieve a therapeutic dose. This technology is appropriate for use with psychotropic, neurotropic, neurological, antibiotic, antibacterial, antimycotic, antiviral, antiproliferative or antineoplastic drugs, agents and conjugates, for rapid and efficient introduction of such agents across, e.g.
    Type: Application
    Filed: November 5, 2001
    Publication date: May 8, 2003
    Inventors: Milton B. Yatvin, Richard L. Pederson
  • Publication number: 20030022846
    Abstract: This invention provides reagents and methods for specifically delivering antibiotic, antimicrobial and antiviral compounds, drugs and agents to phagocytic mammalian cells. The invention also relates to specific delivery to and uptake of such compounds by phagocytic cells. The invention specifically relates to reagents and methods for facilitating the entry of antibiotic, antimicrobial and antiviral compounds, drugs and agents into phagocytic cells. The invention specifically provides compositions of matter and pharmaceutical embodiments of such compositions comprising such antibiotic, antimicrobial or antiviral compounds, drugs and agents conjugated to, impregnated with or coated onto particulate carriers generally termed microparticles. In particular embodiments, the antibiotic, antimicrobial and antiviral compounds, drugs and agents are covalently linked to a microparticle via a specifically-degradable linker molecule which is the target of a microorganism-specific protein having enzymatic activity.
    Type: Application
    Filed: September 9, 2002
    Publication date: January 30, 2003
    Inventors: Michael J. Meredith, Milton B. Yatvin, Richard L. Pederson
  • Publication number: 20020173498
    Abstract: This invention herein describes a method of facilitating the entry of drugs into cells and tissues at pharmokinetically useful levels and also a method of targeting drugs to specific organelles within the cell. This polar lipid/drug conjugate targeting invention embodies an advance over other drug targeting methods because through this method, intracellular drug concentrations may reach levels which are orders of magnitude higher than those achieved otherwise. Furthermore, it refines the drug delivery process by allowing therapeutic agents to be directed to certain intracellular structures. This technology is appropriate for use with antiproliferative, antibiotic, antimycotic, antiviral and antineoplastic drugs, in particular in combination with a multiplicity of other emollients and agents to make up topically-active substances such as salves, for rapid and efficient introduction of such agents through the epidermis for treatment of skin diseases and other disorders.
    Type: Application
    Filed: May 13, 2002
    Publication date: November 21, 2002
    Inventors: Milton B. Yatvin, Michael HB Stowell
  • Patent number: 6455073
    Abstract: This invention provides reagents and methods for specifically delivering antibiotic, antimicrobial and antiviral compounds, drugs and agents to phagocytic mammalian cells. The invention also relates to specific delivery to and uptake of such compounds by phagocytic cells. The invention specifically relates to reagents and methods for facilitating the entry of antibiotic, antimicrobial and antiviral compounds, drugs and agents into phagocytic cells. The invention specifically provides compositions of matter and pharmaceutical embodiments of such compositions comprising such antibiotic, antimicrobial or antiviral compounds, drugs and agents conjugated to, impregnated with or coated onto particulate carriers generally termed microparticles. In particular embodiments, the antibiotic, antimicrobial and antiviral compounds, drugs and agents are covalently linked to a microparticle via a specifically-degradable linker molecule which is the target of a microorganism-specific protein having enzymatic activity.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 24, 2002
    Assignee: Enzrel, Inc.
    Inventors: Michael J. Meredith, Milton B. Yatvin, Richard L. Pederson
  • Patent number: 6436437
    Abstract: This invention herein describes a method of facilitating the entry of drugs into cells and tissues at physiologically protected sites at pharmicokinetically useful levels and also a method of targeting drugs to specific organelles within the cell. This polar lipid/drug conjugate targeting invention embodies an advance over other drug targeting methods known in the prior art, because the invention provides drug concentrations in such physiologically protected sites that can reach therapeutically-effective levels after administration of systemic levels much lower than are currently administered to achieve a therapeutic dose. This technology is appropriate for use with psychotropic, neurotropic and neurological drugs, agents and compounds, for rapid and efficient introduction of such agents across the blood-brain barrier.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: August 20, 2002
    Assignee: Oregon Health and Science University
    Inventors: Milton B. Yatvin, Michael H. B. Stowell, Michael J. Meredith
  • Patent number: 6387876
    Abstract: This invention herein describes a method of facilitating the entry of drugs into cells and tissues at pharmokinetically useful levels and also a method of targeting drugs to specific organelles within the cell. This polar lipid/drug conjugate targeting invention embodies an advance over other drug targeting methods because through this method, intracellular drug concentrations may reach levels which are orders of magnitude higher than those achieved otherwise. Furthermore, it refines the drug delivery process by allowing therapeutic agents to be directed to certain intracellular structures. This technology is appropriate for use with antiproliferative, antibiotic, antimycotic, antiviral and antineoplastic drugs, in particular in combination with a multiplicity of other emollients and agents to make up topically-active substances such as salves, for rapid and efficient introduction of such agents through the epidermis for treatment of skin diseases and other disorders.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: May 14, 2002
    Assignee: Oregon Health and Science University
    Inventors: Milton B. Yatvin, Michael HB Stowell
  • Patent number: 6339060
    Abstract: Methods and reagents are provided for specifically targeting biologically active compounds such as antiviral and antimicrobial drugs, or prodrugs containing the biologically active compound to specific sites such as specific organelles in phagocytic mammalian cells. The biologically active compound or prodrug is linked to a microparticle with a linker that is non-specifically or specifically cleaved inside a phagocytic mammalian cell. Alternatively, the biologically active compound or prodrug is impregnated into a porous microparticle or coated on a nonporous microparticle, and then coated with a coating material that is non-specifically or specifically degraded inside a phagocytic mammalian cell. The prodrug contains the biologically active compound linked to a polar lipid such as ceramide with a specific linker such as a peptide that is specifically cleaved to activate the prodrug in a phagocytic mammalian cell infected with a microorganism.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: January 15, 2002
    Assignee: Oregon Health & Science University
    Inventors: Milton B. Yatvin, Michael H B Stowell, Vincent S. Gallicchio, Michael J. Meredith
  • Patent number: 6063759
    Abstract: Methods and reagents are provided for specifically targeting biologically active compounds such as antiviral and antimicrobial drugs, or prodrugs containing the biologically active compound to specific sites such as specific organelles in phagocytic mammalian cells. The biologically active compound or prodrug is linked to a microparticle with a linker that is non-specifically or specifically cleaved inside a phagocytic mammalian cell. Alternatively, the biologically active compound or prodrug is impregnated into a porous microparticle or coated on a nonporous microparticle, and then coated with a coating material that is non-specifically or specifically degraded inside a phagocytic mammalian cell. The prodrug contains the biologically active compound linked to a polar lipid such as ceramide with a specific linker such as a peptide that is specifically cleaved to activate the prodrug in a phagocytic mammalian cell infected with a microorganism.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: May 16, 2000
    Assignee: Oregon Health Sciences University
    Inventors: Milton B. Yatvin, Michael H B Stowell, Vincent S. Gallicchio, Michael J. Meredith