Patents by Inventor Min-Chuan Tsai

Min-Chuan Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8841733
    Abstract: A method of fabricating a semiconductor device includes following steps. A substrate is provided, wherein a first dielectric layer having a trench therein is formed on the substrate, a source/drain region is formed in the substrate at two sides of the trench, and a second dielectric layer is formed on the substrate in the trench. A first physical vapor deposition process is performed to form a Ti-containing metal layer in the trench. A second physical vapor deposition process is performed to form an Al layer on the Ti-containing metal layer in the trench. A thermal process is performed to anneal the Ti-containing metal layer and the Al layer so as to form a work function metal layer. A metal layer is formed to fill the trench.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 23, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Fu Huang, Kun-Hsien Lin, Chi-Mao Hsu, Min-Chuan Tsai, Tzung-Ying Lee, Chin-Fu Lin
  • Patent number: 8836049
    Abstract: A semiconductor structure includes a work function metal layer, a (work function) metal oxide layer and a main electrode. The work function metal layer is located on a substrate. The (work function) metal oxide layer is located on the work function metal layer. The main electrode is located on the (work function) metal oxide layer. Moreover a semiconductor process forming said semiconductor structure is also provided.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: September 16, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Min-Chuan Tsai, Hsin-Fu Huang, Chi-Mao Hsu, Chin-Fu Lin, Chien-Hao Chen, Wei-Yu Chen, Chi-Yuan Sun, Ya-Hsueh Hsieh, Tsun-Min Cheng
  • Publication number: 20140239419
    Abstract: A method of manufacturing a semiconductor device is provided. A silicon substrate is provided, and a gate insulating layer is formed on the silicon substrate. Then, a silicon barrier layer is formed on the gate insulating layer by the physical vapor deposition (PVD) process. Next, a silicon-containing layer is formed on the silicon barrier layer. The silicon barrier layer of the embodiment is a hydrogen-substantial-zero silicon layer, which has a hydrogen concentration of zero substantially.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Hao Chen, Hsin-Fu Huang, Chi-Yuan Sun, Min-Chuan Tsai, Wei-Yu Chen, Nien-Ting Ho, Tsun-Min Cheng, Chi-Mao Hsu
  • Patent number: 8802524
    Abstract: The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: August 12, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yi-Wei Chen, Hsin-Fu Huang, Tzung-Ying Lee, Min-Chuan Tsai, Chan-Lon Yang, Chun-Yuan Wu, Teng-Chun Tsai, Guang-Yaw Hwang, Chia-Lin Hsu, Jie-Ning Yang, Cheng-Guo Chen, Jung-Tsung Tseng, Zhi-Cheng Lee, Hung-Ling Shih, Po-Cheng Huang, Yi-Wen Chen, Che-Hua Hsu
  • Patent number: 8735269
    Abstract: The method for forming a semiconductor structure includes first providing a substrate. Then, a TiN layer is formed on the substrate at a rate between 0.3 and 0.8 angstrom/second. Finally, a poly-silicon layer is formed directly on the TiN layer. Since the TiN in the barrier layer is formed at a low rate so as to obtain a good quality, the defects in the TiN layer or the defects on the above layer, such as gate dummy layer or gate cap layer, can be avoided.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: May 27, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chi-Yuan Sun, Chien-Hao Chen, Hsin-Fu Huang, Min-Chuan Tsai, Wei-Yu Chen, Chi-Mao Hsu, Tsun-Min Cheng, Chin-Fu Lin
  • Publication number: 20140120711
    Abstract: Provided is a method of forming a metal gate including the following steps. A dielectric layer is formed on a substrate, wherein a gate trench is formed in the dielectric layer and a gate dielectric layer is formed in the gate trench. A first metal layer is formed in the gate trench by applying a AC bias between a target and the substrate during physical vapor deposition. A second metal layer is formed in the gate trench by applying a DC bias between the target and the substrate during physical vapor deposition.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Min-Chuan Tsai, Hsin-Fu Huang, Chi-Mao Hsu, Tsun-Min Cheng, Chien-Hao Chen, Wei-Yu Chen, Chi-Yuan Sun
  • Publication number: 20140097507
    Abstract: The present invention provides a method of forming a semiconductor device having a metal gate. A substrate is provided and a gate dielectric and a work function metal layer are formed thereon, wherein the work function metal layer is on the gate dielectric layer. Then, a top barrier layer is formed on the work function metal layer. The step of forming the top barrier layer includes increasing a concentration of a boundary protection material in the top barrier layer. Lastly, a metal layer is formed on the top barrier layer. The present invention further provides a semiconductor device having a metal gate.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 10, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin, Min-Chuan Tsai, Wei-Yu Chen, Chien-Hao Chen
  • Patent number: 8691681
    Abstract: The present invention provides a method of forming a semiconductor device having a metal gate. A substrate is provided and a gate dielectric and a work function metal layer are formed thereon, wherein the work function metal layer is on the gate dielectric layer. Then, a top barrier layer is formed on the work function metal layer. The step of forming the top barrier layer includes increasing a concentration of a boundary protection material in the top barrier layer. Lastly, a metal layer is formed on the top barrier layer. The present invention further provides a semiconductor device having a metal gate.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: April 8, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin, Min-Chuan Tsai, Wei-Yu Chen, Chien-Hao Chen
  • Publication number: 20140054654
    Abstract: A MOS transistor includes a gate structure on a substrate, and the gate structure includes a wetting layer, a transitional layer and a low resistivity material from bottom to top, wherein the transitional layer has the properties of a work function layer, and the gate structure does not have any work function layers. Moreover, the present invention provides a MOS transistor process forming said MOS transistor.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 27, 2014
    Inventors: Ya-Hsueh Hsieh, Chi-Mao Hsu, Hsin-Fu Huang, Min-Chuan Tsai, Chien-Hao Chen, Chi-Yuan Sun, Wei-Yu Chen, Chin-Fu Lin
  • Publication number: 20130334690
    Abstract: A semiconductor structure includes a work function metal layer, a (work function) metal oxide layer and a main electrode. The work function metal layer is located on a substrate. The (work function) metal oxide layer is located on the work function metal layer. The main electrode is located on the (work function) metal oxide layer. Moreover a semiconductor process forming said semiconductor structure is also provided.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Inventors: Min-Chuan Tsai, Hsin-Fu Huang, Chi-Mao Hsu, Chin-Fu Lin, Chien-Hao Chen, Wei-Yu Chen, Chi-Yuan Sun, Ya-Hsueh Hsieh, Tsun-Min Cheng
  • Publication number: 20130214336
    Abstract: A method for filling a trench with a metal layer is disclosed. A deposition apparatus having a plurality of supporting pins is provided. A substrate and a dielectric layer disposed thereon are provided. The dielectric layer has a trench. A first deposition process is performed immediately after the substrate is placed on the supporting pins to form a metal layer in the trench, wherein during the first deposition process a temperature of the substrate is gradually increased to reach a predetermined temperature. When the temperature of the substrate reaches the predetermined temperature, a second deposition process is performed to completely fill the trench with the metal layer.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 22, 2013
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Min-Chuan Tsai, Chien-Hao Chen, Wei-Yu Chen, Chin-Fu Lin, Jing-Gang Li, Min-Hsien Chen, Jian-Hong Su
  • Publication number: 20130168744
    Abstract: The present invention provides a method of forming a semiconductor device having a metal gate. A substrate is provided and a gate dielectric and a work function metal layer are formed thereon, wherein the work function metal layer is on the gate dielectric layer. Then, a top barrier layer is formed on the work function metal layer. The step of forming the top barrier layer includes increasing a concentration of a boundary protection material in the top barrier layer. Lastly, a metal layer is formed on the top barrier layer. The present invention further provides a semiconductor device having a metal gate.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin, Min-Chuan Tsai, Wei-Yu Chen, Chien-Hao Chen
  • Publication number: 20130049141
    Abstract: A metal gate structure located on a substrate includes a gate dielectric layer, a metal layer and a titanium aluminum nitride metal layer. The gate dielectric layer is located on the substrate. The metal layer is located on the gate dielectric layer. The titanium aluminum nitride metal layer is located on the metal layer.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 28, 2013
    Inventors: Tsun-Min Cheng, Min-Chuan Tsai, Chih-Chien Liu, Jen-Chieh Lin, Pei-Ying Li, Shao-Wei Wang, Mon-Sen Lin, Ching-Ling Lin
  • Publication number: 20120326243
    Abstract: A transistor having an aluminum metal gate includes a substrate, a high-k gate dielectric layer, an aluminum metal gate and a source/drain region. The high-k gate dielectric layer is disposed on the substrate. The aluminum metal gate includes a work function tuning layer and an aluminum metal layer disposed orderly on the high-k gate dielectric layer, where the aluminum metal layer comprises a first aluminum metal layer and a second aluminum metal layer. Furthermore, the source/drain region is disposed in the substrate at each of two sides of the aluminum metal gate.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Inventors: Hsin-Fu Huang, Chi-Mao Hsu, Min-Chuan Tsai, Chin-Fu Lin, Chun-Hsien Lin
  • Publication number: 20120319179
    Abstract: A metal gate includes a substrate, a gate dielectric layer, a work function metal layer, an aluminum nitride layer and a stop layer. The gate dielectric layer is located on the substrate. The work function metal layer is located on the gate dielectric layer. The aluminum nitride layer is located on the work function metal layer. The stop layer is located on the aluminum nitride layer.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Inventors: Hsin-Fu Huang, Zhi-Cheng Lee, Chi-Mao Hsu, Chin-Fu Lin, Kun-Hsien Lin, Tzung-Ying Lee, Min-Chuan Tsai
  • Publication number: 20120292721
    Abstract: A method of fabricating a semiconductor device includes following steps. A substrate is provided, wherein a first dielectric layer having a trench therein is formed on the substrate, a source/drain region is formed in the substrate at two sides of the trench, and a second dielectric layer is formed on the substrate in the trench. A first physical vapor deposition process is performed to form a Ti-containing metal layer in the trench. A second physical vapor deposition process is performed to form an Al layer on the Ti-containing metal layer in the trench. A thermal process is performed to anneal the Ti-containing metal layer and the Al layer so as to form a work function metal layer. A metal layer is formed to fill the trench.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Fu Huang, Kun-Hsien Lin, Chi-Mao Hsu, Min-Chuan Tsai, Tzung-Ying Lee, Chin-Fu Lin
  • Publication number: 20120261770
    Abstract: A metal gate structure includes a high-K gate dielectric layer, an N-containing layer, a work function metal layer, and an N-trapping layer. The N-containing layer is positioned between the work function metal layer and the high-K gate dielectric layer. The N-trapping layer is positioned between the work function metal layer and the high-K gate dielectric layer, and the N-trapping layer contains no nitrogen or low-concentration nitrogen.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Inventors: Kun-Hsien Lin, Hsin-Fu Huang, Tzung-Ying Lee, Min-Chuan Tsai, Chi-Mao Hsu, Chin-Fu Lin
  • Publication number: 20120256275
    Abstract: A manufacturing method of a metal gate structure includes first providing a substrate having a dummy gate formed thereon. The dummy gate includes a high-K gate dielectric layer, a bottom barrier layer, a first etch stop layer and a sacrificial layer sequentially and upwardly stacked on the substrate. Then, the sacrificial layer is removed to form a gate trench with the first etch stop layer exposed on the bottom of the gate trench. After forming the gate trench, a first work function metal layer is formed in the gate trench.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Inventors: Hsin-Fu Huang, Chi-Mao Hsu, Kun-Hsien Lin, Chin-Fu Lin, Tzung-Ying Lee, Min-Chuan Tsai, Yi-Wei Chen, Bin-Siang Tsai, Ted Ming-Lang Guo, Ger-Pin Lin, Yu-Ling Liang, Yen-Ming Chen, Tsai-Yu Wen
  • Publication number: 20120244669
    Abstract: The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yi-Wei Chen, Hsin-Fu Huang, Tzung-Ying Lee, Min-Chuan Tsai, Chan-Lon Yang, Chun-Yuan Wu, Teng-Chun Tsai, Guang-Yaw Hwang, Chia-Lin Hsu, Jie-Ning Yang, Cheng-Guo Chen, Jung-Tsung Tseng, Zhi-Cheng Lee, Hung-Ling Shih, Po-Cheng Huang, Yi-Wen Chen, Che-Hua Hsu
  • Publication number: 20120223397
    Abstract: A method for manufacturing a metal gate structure includes providing a substrate having a high-K gate dielectric layer and a bottom barrier layer sequentially formed thereon, forming a work function metal layer on the substrate, and performing an anneal treatment to the work function metal layer in-situ.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 6, 2012
    Inventors: Chan-Lon Yang, Chi-Mao Hsu, Chun-Yuan Wu, Tzyy-Ming Cheng, Shih-Fang Tzou, Chin-Fu Lin, Hsin-Fu Huang, Min-Chuan Tsai