Patents by Inventor Min Ge

Min Ge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040180813
    Abstract: General methods for monitoring the activity of MurG, a GlcNAc transferase involved in bacterial cell wall biosynthesis, is disclosed. More particularly, the synthesis of simplified substrate analogs of Lipid I (the natural substrate for MurG), which function as acceptors for UDP-GlcNAc in an enzymatic reaction catalyzed by MurG, is described. Assays using the substrate analogs of the invention are further disclosed, which are useful for identifying a variety of other substrates, including inhibitors of MurG activity, for facilitating mechanistic and/or structural studies of the enzyme and for other uses. High throughput assays are also described.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 16, 2004
    Applicant: The Trustees Of Princeton University
    Inventors: Suzanne Walker Kahne, Hongbin Men, Peter Park, Min Ge
  • Publication number: 20040106772
    Abstract: A glycopeptide of the formula A1-A2-A3-A4-A5-A6-A7, in which each dash represents a covalent bond; wherein A1 comprises a modified or unmodified &agr;-amino acid residue, alkyl, aryl, aralkyl, alkanoyl, aroyl, aralkanoyl, heterocyclic, heterocyclic-carbonyl, heterocyclic-alkyl, heterocyclic-alkyl-carbonyl, alkylsulfonyl, arylsulfonyl, guanidinyl, carbamoyl, or xanthyl; wherein each of A2 to A7 comprises a modified or unmodified &agr;-amino acid residue, whereby (i) A1 is linked to an amino group on A2, (ii) each of A2, A4 and A6 bears an aromatic side chain, which aromatic side chains are cross-linked together by two or more covalent bonds, and (iii) A7 bears a terminal carboxyl, ester, amide, or N-substituted amide group;
    Type: Application
    Filed: July 31, 2003
    Publication date: June 3, 2004
    Inventors: Daniel Kahne, Robert Kerns, Seketsu Fukuzawa, Min Ge, Christopher Thompson
  • Patent number: 6710168
    Abstract: A glycopeptide of the formula A1—A2—A3—A4—A5—A6—A7, in which each dash represents a covalent bond; wherein A1 comprises a modified or unmodified &agr;-amino acid residue, alkyl, aryl, aralkyl, alkanoyl, aroyl, aralkanoyl, heterocyclic, heterocyclic-carbonyl, heterocyclic-alkyl, heterocyclic-alkyl-carbonyl, alkylsulfonyl, arylsulfonyl, guanidinyl, carbamoyl, or xanthyl; wherein each of A2 to A7 comprises a modified or unmodified &agr;-amino acid residue, whereby (i) A1 is linked to an amino group on A2, (ii) each of A2, A4 and A6 bears an aromatic side chain, which aromatic side chains are cross-linked together by two or more covalent bonds, and (iii) A7 bears a terminal carboxyl, ester, amide, or N-substituted amide group; and wherein one or more of A1 to A7 is linked via a glycosidic bond to one or more glycosidic groups each having one or more sugar residues, at least one of the sugar residues bearing one or more substituents of the formula YXR, N+(R1)═CR2R3, N
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: March 23, 2004
    Assignee: The Trustees of the University of Princeton
    Inventors: Daniel Kahne, Robert Kerns, Seketsu Fukuzawa, Min Ge, Christopher Thompson
  • Patent number: 6703213
    Abstract: General methods for monitoring the activity of MurG, a GlcNAc transferase involved in bacterial cell wall biosynthesis, is disclosed. More particularly, the synthesis of simplified substrate analogs of Lipid I (the natural substrate for MurG), which function as acceptors for UDP-GlcNAc in an enzymatic reaction catalyzed by MurG, is described. Assays using the substrate analogs of the invention are further disclosed, which are useful for identifying a variety of other substrates, including inhibitors of MurG activity, for facilitating mechanistic and/or structural studies of the enzyme and for other uses. High throughput assays are also described.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: March 9, 2004
    Assignee: The Trustees of Princeton University
    Inventors: Suzanne Walker Kahne, Hongbin Men, Peter Park, Min Ge
  • Publication number: 20020182661
    Abstract: General methods for monitoring the activity of MurG, a GlcNAc transferase involved in bacterial cell wall biosynthesis, is disclosed. More particularly, the synthesis of simplified substrate analogs of Lipid I (the natural substrate for MurG), which function as acceptors for UDP-GlcNAc in an enzymatic reaction catalyzed by MurG, is described. Assays using the substrate analogs of the invention are further disclosed, which are useful for identifing a variety of other substrates, including inhibitors of MurG activity, for facilitating mechanistic and/or structural studies of the enzyme and for other uses. High throughput assays are also described.
    Type: Application
    Filed: April 22, 2002
    Publication date: December 5, 2002
    Inventors: Suzanne Walker Kahne, Hongbin Men, Peter Park, Min Ge
  • Patent number: 6413732
    Abstract: General methods for monitoring the activity of MurG, a GlcNAc transferase involved in bacterial cell wall biosynthesis, is disclosed. More particularly, the synthesis of simplified substrate analogs of Lipid I (the natural substrate for MurG), which function as acceptors for UDP-GlcNAc in an enzymatic reaction catalyzed by MurG, is described. Assays using the substrate analogs of the invention are further disclosed, which are useful for identifying a variety of other substrates, including inhibitors of MurG activity, for facilitating mechanistic and/or structural studies of the enzyme and for other uses. High throughput assays are also described.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: July 2, 2002
    Assignee: The Trustees of Princeton University
    Inventors: Suzanne Walker Kahne, Hongbin Men, Peter Park, Min Ge
  • Patent number: 6388059
    Abstract: A method for forming a glycosidic linkage by: (a) contacting a glycoside bearing an anomeric sulfoxide group with a compound bearing a free hydroxyl group in the presence of an organic acid anhydride and a scavenger of sulfenyl esters; and (b) allowing a glycosylation reaction to proceed under conditions effective to produce the glycosidic linkage. In a preferred embodiment of the invention, the glycoside bearing an anomeric sulfoxide group is added to a mixture of the other reactants. In another preferred embodiment of the invention, a Lewis acid is also present in the reaction mixture. This invention is further directed to a method for forming a glycosidic linkage by: (a) forming a solution comprising: a compound bearing a free hydroxyl group, and an organic acid anhydride; (b) adding to the solution a glycoside bearing an anomeric sulfoxide group; and (c) allowing a glycosylation reaction to proceed under conditions effective to produce the glycosidic linkage.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: May 14, 2002
    Assignee: The Trustees of Princeton University
    Inventors: Daniel Kahne, Jeff Gildersleeve, Christopher Thompson, Min Ge