Patents by Inventor Min-Hsiu HUNG

Min-Hsiu HUNG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12272600
    Abstract: A method includes forming a dielectric layer over an epitaxial source/drain region. An opening is formed in the dielectric layer. The opening exposes a portion of the epitaxial source/drain region. A barrier layer is formed on a sidewall and a bottom of the opening. An oxidation process is performing on the sidewall and the bottom of the opening. The oxidation process transforms a portion of the barrier layer into an oxidized barrier layer and transforms a portion of the dielectric layer adjacent to the oxidized barrier layer into a liner layer. The oxidized barrier layer is removed. The opening is filled with a conductive material in a bottom-up manner. The conductive material is in physical contact with the liner layer.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: April 8, 2025
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Pin-Wen Chen, Chang-Ting Chung, Yi-Hsiang Chao, Yu-Ting Wen, Kai-Chieh Yang, Yu-Chen Ko, Peng-Hao Hsu, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Patent number: 12237218
    Abstract: A method of fabricating a contact structure includes the following steps. An opening is formed in a dielectric layer. A conductive material layer is formed within the opening and on the dielectric layer, wherein the conductive material layer includes a bottom section having a first thickness and a top section having a second thickness, the second thickness is greater than the first thickness. A first treatment is performed on the conductive material layer to form a first oxide layer on the bottom section and on the top section of the conductive material layer. A second treatment is performed to remove at least portions of the first oxide layer and at least portions of the conductive material layer, wherein after performing the second treatment, the bottom section and the top section of the conductive material layer have substantially equal thickness.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: February 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ting Chung, Shih-Wei Yeh, Kai-Chieh Yang, Yu-Ting Wen, Yu-Chen Ko, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20240413020
    Abstract: A method includes forming a contact spacer on a sidewall of an inter-layer dielectric, wherein the contact spacer encircles a contact opening, forming a silicide region in the opening and on a source/drain region, depositing an adhesion layer extending into the contact opening, and performing a treatment process, so that the contact spacer is treated. The treatment process is selected from the group consisting of an oxidation process, a carbonation process, and combinations thereof. The method further includes depositing a metal barrier over the adhesion layer, depositing a metallic material to fill the contact opening, and performing a planarization process to remove excess portions of the metallic material over the inter-layer dielectric.
    Type: Application
    Filed: October 17, 2023
    Publication date: December 12, 2024
    Inventors: Min-Hsiu Hung, Chun-I Tsai, Chih-Wei Chang, Ming-Hsing Tsai, Syun-Ming Jang, Wei-Jen Lo, Wei-Jung Lin, Yu-Ting Wen, Kai-Chieh Yang
  • Publication number: 20240387265
    Abstract: A method includes forming a dielectric layer over an epitaxial source/drain region. An opening is formed in the dielectric layer. The opening exposes a portion of the epitaxial source/drain region. A barrier layer is formed on a sidewall and a bottom of the opening. An oxidation process is performing on the sidewall and the bottom of the opening. The oxidation process transforms a portion of the barrier layer into an oxidized barrier layer and transforms a portion of the dielectric layer adjacent to the oxidized barrier layer into a liner layer. The oxidized barrier layer is removed. The opening is filled with a conductive material in a bottom-up manner. The conductive material is in physical contact with the liner layer.
    Type: Application
    Filed: July 28, 2024
    Publication date: November 21, 2024
    Inventors: Pin-Wen Chen, Chang-Ting Chung, Yi-Hsiang Chao, Yu-Ting Wen, Kai-Chieh Yang, Yu-Chen Ko, Peng-Hao Hsu, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20240379423
    Abstract: A barrier layer is formed in a portion of a thickness of sidewalls in a recess prior to formation of an interconnect structure in the recess. The barrier layer is formed in the portion of the thickness of the sidewalls by a plasma-based deposition operation, in which a precursor reacts with a silicon-rich surface to form the barrier layer. The barrier layer is formed in the portion of the thickness of the sidewalls in that the precursor consumes a portion of the silicon-rich surface of the sidewalls as a result of the plasma treatment. This enables the barrier layer to be formed in a manner in which the cross-sectional width reduction in the recess from the barrier layer is minimized while enabling the barrier layer to be used to promote adhesion in the recess.
    Type: Application
    Filed: July 25, 2024
    Publication date: November 14, 2024
    Inventors: Chien CHANG, Min-Hsiu HUNG, Yu-Hsiang LIAO, Yu-Shiuan WANG, Tai Min CHANG, Kan-Ju LIN, Chih-Shiun CHOU, Hung-Yi HUANG, Chih-Wei CHANG, Ming-Hsing TSAI
  • Publication number: 20240363339
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In a method embodiment, a dielectric layer is formed on a semiconductor substrate. The semiconductor substrate has a source/drain region. An opening is formed through the dielectric layer to the source/drain region. A silicide region is formed on the source/drain region and a barrier layer is formed in the opening along sidewalls of the dielectric layer by a same Plasma-Enhance Chemical Vapor Deposition (PECVD) process.
    Type: Application
    Filed: July 12, 2024
    Publication date: October 31, 2024
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Hung-Yi Huang, Chun Chieh Wang, Yu-Ting Lin
  • Patent number: 12087575
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In a method embodiment, a dielectric layer is formed on a semiconductor substrate. The semiconductor substrate has a source/drain region. An opening is formed through the dielectric layer to the source/drain region. A silicide region is formed on the source/drain region and a barrier layer is formed in the opening along sidewalls of the dielectric layer by a same Plasma-Enhance Chemical Vapor Deposition (PECVD) process.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: September 10, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Hung-Yi Huang, Chun Chieh Wang, Yu-Ting Lin
  • Publication number: 20240249948
    Abstract: The present disclosure relates to a method for fabricating a semiconductor structure. The method includes providing a substrate with a gate structure, an insulating structure over the gate structure, and a S/D region; depositing a titanium silicide layer over the S/D region with a first chemical vapor deposition (CVD) process. The first CVD process includes a first hydrogen gas flow. The method also includes depositing a titanium nitride layer over the insulating structure with a second CVD process. The second CVD process includes a second hydrogen gas flow. The first and second CVD processes are performed in a single reaction chamber and a flow rate of the first hydrogen gas flow is higher than a flow rate of the second hydrogen gas flow.
    Type: Application
    Filed: March 28, 2024
    Publication date: July 25, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei CHANG, Kao-Feng LIN, Min-Hsiu HUNG, Yi-Hsiang CHAO, Huang-Yi HUANG, Yu-Ting LIN
  • Publication number: 20240213016
    Abstract: A method of forming a semiconductor device includes forming a first conductive feature on a bottom surface of an opening through a dielectric layer. The forming the first conductive feature leaves seeds on sidewalls of the opening. A treatment process is performed on the seeds to form treated seeds. The treated seeds are removed with a cleaning process. The cleaning process may include a rinse with deionized water. A second conductive feature is formed to fill the opening.
    Type: Application
    Filed: March 7, 2024
    Publication date: June 27, 2024
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Chun-I Tsai, Ken-Yu Chang, Yi-Ying Liu
  • Publication number: 20240170381
    Abstract: In some implementations, one or more semiconductor processing tools may form a metal cap on a metal gate. The one or more semiconductor processing tools may form one or more dielectric layers on the metal cap. The one or more semiconductor processing tools may form a recess to the metal cap within the one or more dielectric layers. The one or more semiconductor processing tools may perform a bottom-up deposition of metal material on the metal cap to form a metal plug within the recess and directly on the metal cap.
    Type: Application
    Filed: February 1, 2024
    Publication date: May 23, 2024
    Inventors: Chun-Hsien HUANG, Peng-Fu HSU, Yu-Syuan CAI, Min-Hsiu HUNG, Chen-Yuan KAO, Ken-Yu CHANG, Chun-I TSAI, Chia-Han LAI, Chih-Wei CHANG, Ming-Hsing TSAI
  • Patent number: 11972951
    Abstract: The present disclosure relates to a method for fabricating a semiconductor structure. The method includes providing a substrate with a gate structure, an insulating structure over the gate structure, and a S/D region; depositing a titanium silicide layer over the S/D region with a first chemical vapor deposition (CVD) process. The first CVD process includes a first hydrogen gas flow. The method also includes depositing a titanium nitride layer over the insulating structure with a second CVD process. The second CVD process includes a second hydrogen gas flow. The first and second CVD processes are performed in a single reaction chamber and a flow rate of the first hydrogen gas flow is higher than a flow rate of the second hydrogen gas flow.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: April 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei Chang, Kao-Feng Lin, Min-Hsiu Hung, Yi-Hsiang Chao, Huang-Yi Huang, Yu-Ting Lin
  • Publication number: 20240136191
    Abstract: A method of forming a semiconductor device includes forming source/drain regions on opposing sides of a gate structure, where the gate structure is over a fin and surrounded by a first dielectric layer; forming openings in the first dielectric layer to expose the source/drain regions; selectively forming silicide regions in the openings on the source/drain regions using a plasma-enhanced chemical vapor deposition (PECVD) process; and filling the openings with an electrically conductive material.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Min-Hsiu Hung, Chien Chang, Yi-Hsiang Chao, Hung-Yi Huang, Chih-Wei Chang
  • Patent number: 11955329
    Abstract: A method of forming a semiconductor device includes forming a first conductive feature on a bottom surface of an opening through a dielectric layer. The forming the first conductive feature leaves seeds on sidewalls of the opening. A treatment process is performed on the seeds to form treated seeds. The treated seeds are removed with a cleaning process. The cleaning process may include a rinse with deionized water. A second conductive feature is formed to fill the opening.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Chun-I Tsai, Ken-Yu Chang, Yi-Ying Liu
  • Patent number: 11929314
    Abstract: In some implementations, one or more semiconductor processing tools may form a metal cap on a metal gate. The one or more semiconductor processing tools may form one or more dielectric layers on the metal cap. The one or more semiconductor processing tools may form a recess to the metal cap within the one or more dielectric layers. The one or more semiconductor processing tools may perform a bottom-up deposition of metal material on the metal cap to form a metal plug within the recess and directly on the metal cap.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsien Huang, Peng-Fu Hsu, Yu-Syuan Cai, Min-Hsiu Hung, Chen-Yuan Kao, Ken-Yu Chang, Chun-I Tsai, Chia-Han Lai, Chih-Wei Chang, Ming-Hsing Tsai
  • Patent number: 11901183
    Abstract: A method of forming a semiconductor device includes forming source/drain regions on opposing sides of a gate structure, where the gate structure is over a fin and surrounded by a first dielectric layer; forming openings in the first dielectric layer to expose the source/drain regions; selectively forming silicide regions in the openings on the source/drain regions using a plasma-enhanced chemical vapor deposition (PECVD) process; and filling the openings with an electrically conductive material.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Hsiu Hung, Chien Chang, Yi-Hsiang Chao, Hung-Yi Huang, Chih-Wei Chang
  • Publication number: 20230395383
    Abstract: A method of forming a semiconductor device includes the following steps. A first layer is provided, wherein a material of the first layer is amorphous or single crystal. A first conductive layer is directly deposited on the first layer, wherein the first conductive layer is in direct contact with the first layer, and a cross-sectional area of a grain of a material of the first conductive layer is larger than 500 nm2.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Ting Hsiao, Min-Hsiu Hung, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20230386914
    Abstract: Methods of forming a semiconductor device structure are described. In some embodiments, the method includes forming a contact opening in an interlayer dielectric (ILD) layer disposed over an epitaxy source/drain region and forming a metal layer in the contact opening. The metal layer includes top portions, side portions, and a bottom portion, and a space is defined between the top portions of the metal layer. The method further includes performing a gradient metal removal process on the metal layer to enlarge the space, forming a sacrificial layer in the contact opening, recessing the sacrificial layer in the contact opening to expose a portion of the sidewall portions, removing the top portions and the exposed portion of the sidewall portions, removing the sacrificial layer, and forming a bulk metal layer on the bottom portion of the metal layer.
    Type: Application
    Filed: May 26, 2022
    Publication date: November 30, 2023
    Inventors: Yu-Chen KO, Kai-Chieh YANG, Yu-Ting WEN, Ya-Yi CHENG, Min-Hsiu HUNG, Wei-Jung LIN, Chih-Wei CHANG, Ming-Hsing TSAI
  • Publication number: 20230360969
    Abstract: A method of fabricating a contact structure includes the following steps. An opening is formed in a dielectric layer. A conductive material layer is formed within the opening and on the dielectric layer, wherein the conductive material layer includes a bottom section having a first thickness and a top section having a second thickness, the second thickness is greater than the first thickness. A first treatment is performed on the conductive material layer to form a first oxide layer on the bottom section and on the top section of the conductive material layer. A second treatment is performed to remove at least portions of the first oxide layer and at least portions of the conductive material layer, wherein after performing the second treatment, the bottom section and the top section of the conductive material layer have substantially equal thickness.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 9, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ting Chung, Shih-Wei Yeh, Kai-Chieh Yang, Yu-Ting Wen, Yu-Chen Ko, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20230268173
    Abstract: A method of forming a semiconductor device includes forming a first conductive feature on a bottom surface of an opening through a dielectric layer. The forming the first conductive feature leaves seeds on sidewalls of the opening. A treatment process is performed on the seeds to form treated seeds. The treated seeds are removed with a cleaning process. The cleaning process may include a rinse with deionized water. A second conductive feature is formed to fill the opening.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Chun-I Tsai, Ken-Yu Chang, Yi-Ying Liu
  • Publication number: 20230223302
    Abstract: A method includes forming a dielectric layer over an epitaxial source/drain region. An opening is formed in the dielectric layer. The opening exposes a portion of the epitaxial source/drain region. A barrier layer is formed on a sidewall and a bottom of the opening. An oxidation process is performing on the sidewall and the bottom of the opening. The oxidation process transforms a portion of the barrier layer into an oxidized barrier layer and transforms a portion of the dielectric layer adjacent to the oxidized barrier layer into a liner layer. The oxidized barrier layer is removed. The opening is filled with a conductive material in a bottom-up manner. The conductive material is in physical contact with the liner layer.
    Type: Application
    Filed: May 13, 2022
    Publication date: July 13, 2023
    Inventors: Pin-Wen Chen, Chang-Ting Chung, Yi-Hsiang Chao, Yu-Ting Wen, Kai-Chieh Yang, Yu-Chen Ko, Peng-Hao Hsu, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai