Patents by Inventor Min Ki Kwon

Min Ki Kwon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10761374
    Abstract: A liquid crystal display according to an exemplary embodiment of the present invention includes: a first display panel and a second display panel. A liquid crystal layer is between the first display panel and the second display panel with a sealant therebetween. The first display panel includes a display area and a non-display area. First light blocking members are disposed in the non-display area. The liquid crystal layer includes a plurality of liquid crystal molecules and a plurality of protrusions. The protrusions are adjacent to at least one of the first display panel or the second display panel.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 1, 2020
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Gi Hoon Yang, Ju Young Sung, Min Ki Kwon, Chu Young Seo, Bo Seul Lee
  • Publication number: 20190265553
    Abstract: A liquid crystal display according to an exemplary embodiment of the present invention includes: a first display panel and a second display panel. A liquid crystal layer is between the first display panel and the second display panel with a sealant therebetween. The first display panel includes a display area and a non-display area. First light blocking members are disposed in the non-display area. The liquid crystal layer includes a plurality of liquid crystal molecules and a plurality of protrusions. The protrusions are adjacent to at least one of the first display panel or the second display panel.
    Type: Application
    Filed: September 21, 2018
    Publication date: August 29, 2019
    Inventors: Gi Hoon Yang, Ju Young Sung, Min Ki Kwon, Chu Young Seo, Bo Seul Lee
  • Patent number: 9166098
    Abstract: There is provided a nitride semiconductor light emitting device including an active layer of a multi quantum well structure, the nitride semiconductor light emitting device including: a substrate; and a buffer layer, an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer sequentially stacked on the substrate, wherein the active layer is formed of a multi quantum well structure where a plurality of barrier layers and a plurality of well layers are arranged alternately with each other, and at least one of the plurality of barrier layers includes a first barrier layer including a p-doped barrier layer doped with a p-dopant and an undoped barrier layer.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 20, 2015
    Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: Sang Won Kang, Seong Ju Park, Min Ki Kwon, Sang Jun Lee, Joo Young Cho, Yong Chun Kim, Sang Heon Han, Dong Ju Lee, Jeong Tak Oh, Je Won Kim
  • Patent number: 8405103
    Abstract: There is provided a photonic crystal light emitting device including: a light emitting structure including first and second conductivity type semiconductor layers and an active layer interposed therebetween; a transparent electrode layer formed on the second conductivity type semiconductor layer, the transparent electrode layer having a plurality of holes arranged with a predetermined size and period so as to form a photonic band gap for light emitted from the active layer, whereby the transparent electrode layer includes a photonic crystal structure; and first and second electrode electrically connected to the first conductivity type semiconductor layer and the transparent electrode layer, respectively. The photonic crystal light emitting device has a transparent electrode layer formed of a photonic crystal structure defined by minute holes, thereby improved in light extraction efficiency.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: March 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Yul Lee, Seong Ju Park, Min Ki Kwon, Ja Yeon Kim, Yong Chun Kim, Bang Won Oh, Seok Min Hwang, Je Won Kim
  • Patent number: 8269242
    Abstract: Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and an active layer disposed therebetween, and a surface plasmon layer disposed between the active layer and at least one of the n-type and p-type semiconductor layers, including metallic particles and an insulating material, and including a conductive via for electrical connection between the active layer and the at least one of the n-type and p-type semiconductor layers, wherein the metallic particles are enclosed by the insulating material to be insulated from the at least one of the n-type and p-type semiconductor layers. The semiconductor light emitting device can achieve enhanced emission efficiency by using surface plasmon resonance. Using the semiconductor light emitting device, the diffusion of a metal employed for surface plasmon resonance into the active layer can be minimized.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: September 18, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Yul Lee, Seong Ju Park, Min Ki Kwon, Chu Young Cho, Chang Hee Cho, Yong Chun Kim, Seung Beom Seo, Myung Goo Cheong, Dong Joon Kim
  • Patent number: 7842539
    Abstract: There are provided a method of manufacturing a zinc oxide semiconductor, and a zinc oxide semiconductor manufactured using the method. A metal catalyst layer is formed on a zinc oxide thin film that has an electrical characteristic of a n-type semiconductor, and a heat treatment is performed thereon so that the zinc oxide thin film is modified into a zinc oxide thin film having an electrical characteristic of a p-type semiconductor. Hydrogen atoms existing in the zinc oxide thin film are removed by a metal catalyst during the heat treatment. Accordingly, the hydrogen atoms existing in the zinc oxide thin film are removed by the metal catalyst and the heat treatment, and the concentration of holes serving as carriers is increased. That is, an n-type zinc oxide thin film is modified into a highly-concentrated p-type zinc oxide semiconductor.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: November 30, 2010
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Seong Ju Park, Min Suk Oh, Dae Kyu Hwang, Min Ki Kwon
  • Patent number: 7763881
    Abstract: There is provided a photonic crystal light emitting device including: a substrate; a plurality of nano rod light emitting structures formed on the substrate to be spaced apart from one another, each of the nano rod light emitting structures including a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer; and first and second electrodes electrically connected to the first and second conductivity type semiconductor layers, respectively, wherein the nano rod light emitting structures are arranged with a predetermined size and period so as to form a photonic band gap for light emitted from the active layer, whereby the nano rod light emitting structures define a photonic crystal structure. In the photonic crystal light emitting device, the nano rod light emitting structures are arranged to define a photonic crystal to enhance light extraction efficiency.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: July 27, 2010
    Assignee: Samsung LED., Ltd.
    Inventors: Dong Yul Lee, Seong Ju Park, Min Ki Kwon, Ja Yeon Kim, Dong Joon Kim, Yong Chun Kim, Je Won Kim
  • Publication number: 20100181588
    Abstract: Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and an active layer disposed therebetween, and a surface plasmon layer disposed between the active layer and at least one of the n-type and p-type semiconductor layers, including metallic particles and an insulating material, and including a conductive via for electrical connection between the active layer and the at least one of the n-type and p-type semiconductor layers, wherein the metallic particles are enclosed by the insulating material to be insulated from the at least one of the n-type and p-type semiconductor layers. The semiconductor light emitting device can achieve enhanced emission efficiency by using surface plasmon resonance. Using the semiconductor light emitting device, the diffusion of a metal employed for surface plasmon resonance into the active layer can be minimized.
    Type: Application
    Filed: December 1, 2009
    Publication date: July 22, 2010
    Inventors: Dong Yul LEE, Seong Ju Park, Min Ki Kwon, Chu Young Cho, Chang Hee Cho, Yong Chun Kim, Seung Beom Seo, Myung Goo Cheong, Dong Joon Kim
  • Patent number: 7755098
    Abstract: Provided is a zinc oxide light emitting diode having improved optical characteristics. The zinc oxide light emitting diode includes an n-type semiconductor layer, a zinc oxide active layer formed on the n-type semiconductor layer, a p-type semiconductor layer formed on the active layer, an anode in electrical contact with the p-type semiconductor layer, a cathode in electrical contact with the n-type semiconductor layer, and a surface plasmon layer disposed between the n-type semiconductor layer and the active layer or between the active layer and the p-type semiconductor layer. Since the surface plasmon layer is formed between the n-type semiconductor layer and the active layer or between the active layer and the p-type semiconductor layer, the light emitting diode is not affected by an increase in resistance due to reduction of the thickness of the p-type semiconductor layer, and has improved optical characteristics due to a resonance phenomenon between the surface plasmon layer and the active layer.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: July 13, 2010
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Seong-Ju Park, Dae-Kue Hwang, Min-Ki Kwon, Min-Suk Oh, Yong-Seok Choi
  • Publication number: 20100019223
    Abstract: There is provided a nitride semiconductor light emitting device including an active layer of a multi quantum well structure, the nitride semiconductor light emitting device including: a substrate; and a buffer layer, an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer sequentially stacked on the substrate, wherein the active layer is formed of a multi quantum well structure where a plurality of barrier layers and a plurality of well layers are arranged alternately with each other, and at least one of the plurality of barrier layers includes a first barrier layer including a p-doped barrier layer doped with a p-dopant and an undoped barrier layer.
    Type: Application
    Filed: December 18, 2008
    Publication date: January 28, 2010
    Applicants: SAMSUNG ELECTRO-MECHANICS CO., LTD., GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Won Kang, Seong Ju Park, Min Ki Kwon, Sang Jun Lee, Joo Young Cho, Yong Chun Kim, Sang Heon Han, Dong Ju Lee, Jeong Tak Oh, Je Won Kim
  • Publication number: 20090256148
    Abstract: Provided is a zinc oxide light emitting diode having improved optical characteristics. The zinc oxide light emitting diode includes an n-type semiconductor layer, a zinc oxide active layer formed on the n-type semiconductor layer, a p-type semiconductor layer formed on the active layer, an anode in electrical contact with the p-type semiconductor layer, a cathode in electrical contact with the n-type semiconductor layer, and a surface plasmon layer disposed between the n-type semiconductor layer and the active layer or between the active layer and the p-type semiconductor layer. Since the surface plasmon layer is formed between the n-type semiconductor layer and the active layer or between the active layer and the p-type semiconductor layer, the light emitting diode is not affected by an increase in resistance due to reduction of the thickness of the p-type semiconductor layer, and has improved optical characteristics due to a resonance phenomenon between the surface plasmon layer and the active layer.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 15, 2009
    Applicant: Gwangju Institute of Science and Technology
    Inventors: Seong-Ju PARK, Dae-Kue HWANG, Min-Ki KWON, Min-Suk OH, Yong-Seok CHOI
  • Patent number: 7575944
    Abstract: Provided is a method of manufacturing a nitride-based semiconductor LED including sequentially forming an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer on a substrate; forming a Pd/Zn alloy layer on the p-type nitride semiconductor layer; heat-treating the p-type nitride semiconductor layer on which the Pd/Zn alloy layer is formed; removing the Pd/Zn alloy layer formed on the p-type nitride semiconductor layer; mesa-etching portions of the p-type nitride semiconductor layer, the active layer, and the n-type nitride semiconductor layer such that a portion of the upper surface of the n-type nitride semiconductor layer is exposed; and forming an n-electrode and a p-electrode on the exposed n-type nitride semiconductor layer and the p-type nitride semiconductor layer, respectively.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: August 18, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sun Woon Kim, Seong Ju Park, Ja Yeon Kim, Min Ki Kwon, Dong Ju Lee, Jae Ho Han
  • Publication number: 20090184334
    Abstract: There is provided a photonic crystal light emitting device including: a light emitting structure including first and second conductivity type semiconductor layers and an active layer interposed therebetween; a transparent electrode layer formed on the second conductivity type semiconductor layer, the transparent electrode layer having a plurality of holes arranged with a predetermined size and period so as to form a photonic band gap for light emitted from the active layer, whereby the transparent electrode layer includes a photonic crystal structure; and first and second electrode electrically connected to the first conductivity type semiconductor layer and the transparent electrode layer, respectively. The photonic crystal light emitting device has a transparent electrode layer formed of a photonic crystal structure defined by minute holes, thereby improved in light extraction efficiency.
    Type: Application
    Filed: July 30, 2008
    Publication date: July 23, 2009
    Inventors: Dong Yul Lee, Seong Ju Park, Min Ki Kwon, Ja Yeon Kim, Yong Chun Kim, Bang Won Oh, Seok Min Hwang, Je Won Kim
  • Publication number: 20090032800
    Abstract: There is provided a photonic crystal light emitting device including: a substrate; a plurality of nano rod light emitting structures formed on the substrate to be spaced apart from one another, each of the nano rod light emitting structures including a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer; and first and second electrodes electrically connected to the first and second conductivity type semiconductor layers, respectively, wherein the nano rod light emitting structures are arranged with a predetermined size and period so as to form a photonic band gap for light emitted from the active layer, whereby the nano rod light emitting structures define a photonic crystal structure. In the photonic crystal light emitting device, the nano rod light emitting structures are arranged to define a photonic crystal to enhance light extraction efficiency.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 5, 2009
    Inventors: Dong Yul Lee, Seong Ju Park, Min Ki Kwon, Ja Yeon Kim, Dong Joon Kim, Yong Chun Kim, Je Won Kim
  • Publication number: 20090001363
    Abstract: There are provided a method of manufacturing a zinc oxide semiconductor, and a zinc oxide semiconductor manufactured using the method. A metal catalyst layer is formed on a zinc oxide thin film that has an electrical characteristic of a n-type semiconductor, and a heat treatment is performed thereon so that the zinc oxide thin film is modified into a zinc oxide thin film having an electrical characteristic of a p-type semiconductor. Hydrogen atoms existing in the zinc oxide thin film are removed by a metal catalyst during the heat treatment. Accordingly, the hydrogen atoms existing in the zinc oxide thin film are removed by the metal catalyst and the heat treatment, and the concentration of holes serving as carriers is increased. That is, an n-type zinc oxide thin film is modified into a highly-concentrated p-type zinc oxide semiconductor.
    Type: Application
    Filed: June 24, 2008
    Publication date: January 1, 2009
    Applicant: Gwangju Institute of Science and Technology
    Inventors: Seong Ju Park, Min Suk Oh, Dae Kyu Hwang, Min Ki Kwon
  • Publication number: 20080293177
    Abstract: Provided is a method of manufacturing a nitride-based semiconductor LED including sequentially forming an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer on a substrate; forming a Pd/Zn alloy layer on the p-type nitride semiconductor layer; heat-treating the p-type nitride semiconductor layer on which the Pd/Zn alloy layer is formed; removing the Pd/Zn alloy layer formed on the p-type nitride semiconductor layer; mesa-etching portions of the p-type nitride semiconductor layer, the active layer, and the n-type nitride semiconductor layer such that a portion of the upper surface of the n-type nitride semiconductor layer is exposed; and forming an n-electrode and a p-electrode on the exposed n-type nitride semiconductor layer and the p-type nitride semiconductor layer, respectively.
    Type: Application
    Filed: August 13, 2007
    Publication date: November 27, 2008
    Inventors: Sun Woon Kim, Seong Ju Park, Ja Yeon Kim, Min Ki Kwon, Dong Ju Lee, Jae Ho Han