Patents by Inventor Min-Su Ko

Min-Su Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230383019
    Abstract: The present invention relates to equipment for preparing a polyolefin elastomer including a reactor to which a solvent and a raw material are supplied, a primary devolatilizer which devolatilizes a product discharged from the reactor to remove an unreacted material (primary devolatilization recovery flow), and to discharge the remainder thereof (primary devolatilization preparation flow), a secondary devolatilizer which re-devolatilizes the primary devolatilization preparation flow discharged from the primary devolatilizer to further remove an unreacted material (secondary devolatilization recovery flow), and to discharge the remainder thereof (secondary devolatilization preparation flow), a finisher which scrubs, using water, the secondary devolatilization preparation flow discharged from the secondary devolatilizer, so that the unreacted material and the water are evaporated and a polymer product remains, and a flash drum which removes low-molecular materials (impurity removal flow) from the primary devolat
    Type: Application
    Filed: July 26, 2021
    Publication date: November 30, 2023
    Inventors: Chan Ho PARK, Jong Joo HA, Min Su KO, Sang Joon OH
  • Publication number: 20230365724
    Abstract: The present invention relates to a technique for recovering a solvent and an unreacted material in an extruder (finisher) for a polyolefin elastomer (POE) preparation process, wherein the solvent and the unreacted material are maximally recovered with energy minimization through a recovery process of hydrocarbons (HCs) removed from a product in the extruder (finisher) for the POE preparation process, and thus are reused in the polyolefin elastomer preparation process.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 16, 2023
    Inventors: Chan Ho PARK, Min Su KO
  • Publication number: 20230203219
    Abstract: Provided is a method of manufacturing an ethylene vinyl alcohol copolymer, the method including: introducing a monomer including ethylene and vinyl acetate, and a first solvent into a reactor to manufacture an ethylene vinyl acetate copolymer through polymerization; recovering unreacted ethylene after the polymerization; recovering unreacted vinyl acetate after the polymerization; introducing a second solvent different from the first solvent to manufacture an ethylene vinyl alcohol copolymer from the ethylene vinyl acetate copolymer through transesterification; and separating the second solvent-derived acetate produced from the transesterification by the method described herein.
    Type: Application
    Filed: December 23, 2022
    Publication date: June 29, 2023
    Inventors: Jung Hun KIM, Min Su KO, Sang Joon OH, Seok Kyoo SEO, Kwang In KIM, In Hwa HONG
  • Patent number: 9067852
    Abstract: A hybrid process comprising an adsorption process and a distillation process for the separation of butene-1 from a C4 hydrocarbon mixture gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. is provided. The hybrid process comprises introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbents which adsorb olefins selectively to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins selectively adsorbed in the adsortion tower to produce high purity C4 olefins mixture gas in which isobutane and normal butane was removed, and separating the high C4 olefins mixture gas (a mixture of butene-1, trans-2-butene, cis-2-butene, and a trace amount of C4 paraffins) via distinction to obtain high purity butene-1 including a trace amount of isobutane in the top of the distillation tower and obtain a mixture gas including trans-2-butene, cis-2-butene and a trace amount of normal butane in the bottom of the tower.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: June 30, 2015
    Assignees: KOREA INSTITUTE OF ENERGY RESEARCH, SK ENERGY CO., LTD
    Inventors: Jong-Ho Park, Jong-Nam Kim, Seong-Jun Lee, Min-Su Ko, Hee Tae Beum, Jongkee Park, Chang Hyun Ko, Sang Sup Han, Soon-Haeng Cho
  • Patent number: 9062262
    Abstract: Disclosed is a method of recovering 1,3-butadiene from a C4 stream containing butane, isobutane, 2-butene, 1-butene, isobutene, butadiene and acetylene. The process of recovering highly pure 1,3-butadiene includes acetylene conversion for selectively converting acetylene through liquid-phase hydrogenation, so that the acetylene content is decreased to 70 wt ppm or less, and 1,3-butadiene extraction using an extractive distillation column, a pre-separator, a solvent stripping column, a solvent recovery column, and a purification column. Through the acetylene conversion, the concentration of vinylacetylene is decreased to 70 wt ppm or less, after which 1,3-butadiene is recovered using only one extractive distillation column, thereby considerably decreasing the degree of utility and the loss of streams in the course of extraction. The number of units necessary for the process is decreased, thus remarkably reducing the time during which impurities can accumulate in a processing unit.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: June 23, 2015
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Hee Du Lee, Kyung Jong Oh, Min Su Ko, Min Gyoo Park, Seong Jun Lee, Yoon Jae Yim, Seung Hoon Oh, Tae Jin Kim, Yong Seung Kim, Deuk Soo Park, Hong Chan Kim
  • Patent number: 9034185
    Abstract: A method and apparatus for the separation of C4 olefins (butene-1, trans-2-butene, cis-2-butene, etc.) and C4 paraffins (normal butane, isobutane, etc) from a C4 hydrocarbon mixed gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. is provided. The apparatus includes several adsorption towers loaded with an adsorbent which selectively adsorb olefins and two distillation towers for the separation of the mixture gases of olefins/desorbents and paraffins/desorbents respectively.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: May 19, 2015
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jong-Nam Kim, Jong-Ho Park, Seong-Jun Lee, Min-Su Ko, Hee Tae Beum, Jongkee Park, Chang Hyun Ko, Sang Sup Han, Soon-Haeng Cho
  • Patent number: 8674156
    Abstract: A method of producing a mixed manganese ferrite catalyst, and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst. Specifically, a method of producing a mixed manganese ferrite catalyst through a coprecipitation method which is performed at a temperature of 10˜40° C., and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst through an oxidative dehydrogenation reaction, in which a C4 mixture containing n-butene, n-butane and other impurities is directly used as reactants without performing additional n-butane separation process or n-butene extraction. 1,3-butadiene can be prepared directly using a C4 mixture including n-butane at a high concentration as a reactant through an oxidative hydrogenation reaction without performing an additional n-butane separation process, and 1,3-butadiene, having high activity, can be also obtained in high yield for a long period of time.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 18, 2014
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co. Ltd.
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Min Su Ko, Seung Hoon Oh, Yong Seung Kim, In Kyu Song
  • Patent number: 8436223
    Abstract: The present invention relates to a method for the separation of C4 olefins and C4 paraffins from a C4 hydrocarbon mixed gas including butene-1, trans-2- butene, cis-2-butene, normal butane, isobutane, etc. The method of the present invention produces C4 olefins with high purity by introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbent selectively adsorbing olefins to adsorb C4 olefins and to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins adsorbed on the adsorption tower with a desorbent C5 hydrocarbon, C6 hydrocarbon, etc.), and then separating the C4 olefin and the desorbent by a distillation process.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 7, 2013
    Assignees: Korea Institute of Energy Research, SK Energy Co., Ltd
    Inventors: Jong-Nam Kim, Jong-Ho Park, Seong-Jun Lee, Min-Su Ko, Hee Tae Beum, Jongkee Park, Chang Hyun Ko, Sang Sup Han, Soon-Haeng Cho
  • Patent number: 8431762
    Abstract: The present invention relates to a hybrid process comprising an adsorption process and a distillation process for the separation of butene-1 from a C4 hydrocarbon mixture gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. The above hybrid process comprises introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbents which adsorb olefins selectively to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins selectively adsorbed in the adsorption tower to produce high purity C4 olefins mixture gas in which isobutane and normal butane was removed, and separating the high C4 olefins mixture gas (a mixture of butene-1, trans-2-butene, cis-2-butene, and a trace amount of C4 paraffins) via distillation to obtain high purity butene-1 including a trace amount of isobutane in the top of the distillation tower and obtain a mixture gas including trans-2-butene, cis-2-butene and a trace amount of normal butane in the bottom of the tower.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 30, 2013
    Assignees: Korea Institute of Energy Research, SK Energy Co., Ltd
    Inventors: Jong-Ho Park, Jong-Nam Kim, Seong-Jun Lee, Min-Su Ko, Hee Tae Beum, Jongkee Park, Chang Hyun Ko, Sang Sup Han, Soon-Haeng Cho
  • Publication number: 20100280300
    Abstract: A method of producing a mixed manganese ferrite catalyst, and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst. Specifically, a method of producing a mixed manganese ferrite catalyst through a coprecipitation method which is performed at a temperature of 10˜40° C., and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst through an oxidative dehydrogenation reaction, in which a C4 mixture containing n-butene, n-butane and other impurities is directly used as reactants without performing additional n-butane separation process or n-butene extraction. 1,3-butadiene can be prepared directly using a C4 mixture including n-butane at a high concentration as a reactant through an oxidative hydrogenation reaction without performing an additional n-butane separation process, and 1,3-butadiene, having high activity, can be also obtained in high yield for a long period of time.
    Type: Application
    Filed: November 7, 2008
    Publication date: November 4, 2010
    Applicant: SK ENERGY CO., LTD
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Min Su Ko, Seung Hoon Oh, Yong Seung Kim, In Kyu Song
  • Publication number: 20100137664
    Abstract: Disclosed is a method of recovering 1,3-butadiene from a C4 stream containing butane, isobutane, 2-butene, 1-butene, isobutene, butadiene and acetylene. The process of recovering highly pure 1,3-butadiene includes acetylene conversion for selectively converting acetylene through liquid-phase hydrogenation, so that the acetylene content is decreased to 70 wt ppm or less, and 1,3-butadiene extraction using an extractive distillation column, a pre-separator, a solvent stripping column, a solvent recovery column, and a purification column. Through the acetylene conversion, the concentration of vinylacetylene is decreased to 70 wt ppm or less, after which 1,3-butadiene is recovered using only one extractive distillation column, thereby considerably decreasing the degree of utility and the loss of streams in the course of extraction. The number of units necessary for the process is decreased, thus remarkably reducing the time during which impurities can accumulate in a processing unit.
    Type: Application
    Filed: July 18, 2008
    Publication date: June 3, 2010
    Inventors: Hee Du Lee, Kyung Jong Oh, Min Su Ko, Min Gyoo Park, Seong Jun Lee, Yoon Jae Yim, Seung Hoon Oh, Tae Jin Kim, Yong Seung Kim, Deuk Soo Park, Hong Chan Kim
  • Publication number: 20100116639
    Abstract: The present invention relates to a hybrid process comprising an adsorption process and a distillation process for the separation of butene-1 from a C4 hydrocarbon mixture gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. The above hybrid process comprises introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbents which adsorb olefins selectively to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins selectively adsorbed in the adsorption tower to produce high purity C4 olefins mixture gas in which isobutane and normal butane was removed, and separating the high C4 olefins mixture gas (a mixture of butene-1, trans-2-butene, cis-2-butene, and a trace amount of C4 paraffins) via distillation to obtain high purity butene-1 including a trace amount of isobutane in the top of the distillation tower and obtain a mixture gas including trans-2-butene, cis-2-butene and a trace amount of normal butane in the bottom of the tower.
    Type: Application
    Filed: April 11, 2008
    Publication date: May 13, 2010
    Applicants: KOREA INSTITUTE OF ENERGY RESEARCH, SK ENERGY CO., LTD.
    Inventors: Jong-Ho Park, Jong-Nam Kim, Seong-Jun Lee, Min-Su Ko, Hee Tae Beum, Jongkee Park, Chang Hyun Ko, Sang Sup Han, Soon-Haeng Cho
  • Publication number: 20100048971
    Abstract: The present invention relates to a method and an apparatus for the separation of C4 olefins (butene-1, trans-2-butene, cis-2-butene, etc.) and C4 paraffins (normal butane, isobutane, etc.) from a C4 hydrocarbon mixed gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. The method of the present invention produces C4 olefins with high purity by introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbent selectively adsorbing olefins to adsorb C4 olefins and to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins adsorbed on the adsorption tower with a desorbent (C5 hydrocarbon, C6 hydrocarbon, etc.), and then separating the C4 olefin and the desorbent by a distillation process.
    Type: Application
    Filed: March 28, 2008
    Publication date: February 25, 2010
    Applicants: KOREA INSTITUTE OF ENERGY RESEARCH, SK ENERGY CO., LTD.
    Inventors: Jong-Nam Kim, Jong-Ho Park, Seong-Jun Lee, Min-Su Ko, Hee Tae Beum, Jongkee Park, Chang Hyun Ko, Sang Sup Han, Soon-Haeng Cho