Patents by Inventor Min-Suk Kang

Min-Suk Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220259125
    Abstract: Provided is a method of decomposing phenolic by-products, and more particularly, a method of decomposing phenolic by-products including: supplying a phenolic by-product stream to a decomposition device to perform thermal decomposition; separating an upper discharge stream including effective components and a lower discharge stream including materials having a high boiling point in the decomposition device; supplying the lower discharge stream from the decomposition device, a side discharge stream from the decomposition device, and a process water stream to a mixing device and mixing these streams; and supplying a discharge stream from the mixing device to a layer separation device to separate the discharge stream from the mixing device into an oil phase and an aqueous phase.
    Type: Application
    Filed: June 15, 2021
    Publication date: August 18, 2022
    Inventors: Min Suk KANG, Sang Beom LEE, Ji Hyang SON, Chi Hyun JANG
  • Patent number: 11414364
    Abstract: The present disclosure provides a method for decomposing a phenolic by-product, the method including: a step S10 of feeding a phenolic by-product stream to a decomposition apparatus and thermally cracking the phenolic by-product stream; a step S20 of recovering an active ingredient from a top discharge stream of the decomposition apparatus and discharging a substance having a high boiling point through a bottom discharge stream of the decomposition apparatus; a step S30 of passing a part of the bottom discharge stream of the decomposition apparatus through a reboiler and then feeding the part of the bottom discharge stream of the decomposition apparatus to the decomposition apparatus and discharging a residual stream of the bottom discharge stream of the decomposition apparatus; and a step S40 of feeding a side discharge stream of the decomposition apparatus to the reboiler.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: August 16, 2022
    Assignee: LG Chern, Ltd.
    Inventors: Min Suk Kang, Sang Beom Lee, Chi Hyun Jang
  • Publication number: 20220251012
    Abstract: The present disclosure relates to a method of decomposing a phenolic by-product, including: a step of feeding and thermally cracking a phenolic by-product stream to and in a decomposition apparatus, recovering an active ingredient from a top discharge stream, and discharging a high-boiling substance through a bottom discharge stream; a step of pressurizing each of a side discharge stream of the decomposition apparatus and a bottom discharge stream of the decomposition apparatus; a step of mixing the pressurized side discharge stream of the decomposition apparatus and the pressurized bottom discharge stream of the decomposition apparatus with each other to form a mixed stream; and a step of passing a part of the mixed stream through a reboiler, circulating the part of the mixed stream to the decomposition apparatus, and discharging a residual mixed stream.
    Type: Application
    Filed: November 23, 2020
    Publication date: August 11, 2022
    Inventors: Min Suk KANG, Sang Beom LEE, Chi Hyun JANG
  • Patent number: 11407694
    Abstract: In a process of decomposing byproducts of a phenol production process using a reactive distillation column in which a reactor and a distillation column are integrated, since acetophenone is mixed with tar recovered to a lower part of the reactive distillation column and transferred, viscosity of the tar may be lowered so that the tar may be transferred at room temperature, and since the reactive distillation column may be operated at 0.5 to 3 bar, an operating temperature of the reactive distillation column is low as compared with a method of separating acetophenone by pressurization with high pressure, significantly reducing an operation cost of a heater required for a reaction. Also, since acetophenone is separately recovered at a position of 25 to 90% of a total number of stages in the reactive distillation column, recovery of an active ingredient may be enhanced.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: August 9, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Min Suk Kang, Sang Beom Lee, Sung Ho Lee, Joon Ho Shin, Chul Han Park
  • Patent number: 11370735
    Abstract: A method for decomposing a phenolic by-product generated in a phenol preparation process, the method including: adding a phenolic by-product stream, a decomposition apparatus side discharge stream, and process water to a mixing apparatus and mixing the phenolic by-product stream, the decomposition apparatus side discharge stream, and the process water; adding a mixing apparatus discharge stream discharged from the mixing apparatus to a phase separation apparatus and phase-separating the mixing apparatus discharge stream into an oil phase and an aqueous phase; feeding an oil phase stream discharged from the phase-separation apparatus and discharged to a decomposition apparatus and decomposing the oil phase stream; and circulating the decomposition apparatus side discharge stream discharged from the decomposition apparatus to the mixing apparatus.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: June 28, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Sang Beom Lee, Min Suk Kang, Joon Ho Shin
  • Publication number: 20220149346
    Abstract: The cathode active material for a lithium secondary battery includes lithium-transition metal composite oxide particles having a crystal grain size of less than 300 nm measured through XRD analysis and an XRD peak intensity ratio of 7% or more. The present invention provides a lithium secondary battery with improved life-span properties and output properties by controlling the crystal grain size and XRD peak intensity ratio of lithium-transition metal composite oxide particles.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 12, 2022
    Inventors: Yoon Ji Lee, Sang Han Lee, Min Suk Kang, Yong Hyun Cho
  • Publication number: 20220109153
    Abstract: A cathode active material for a lithium secondary battery according to an embodiment of the present invention includes a lithium composite oxide particle that contains lithium and transition metals including an excess amount of nickel. The lithium composite oxide particle satisfies a predetermined XRD peak area relation. A lithium secondary battery using the cathode active material and providing improved stability and durability is provided.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 7, 2022
    Inventors: Soo Ho KIM, Min Gu KANG, Min Suk KANG
  • Publication number: 20220106241
    Abstract: The present disclosure provides a method for decomposing a phenolic by-product, the method including: a step S10 of feeding a phenolic by-product stream to a decomposition apparatus and thermally cracking the phenolic by-product stream; a step S20 of recovering an active ingredient from a top discharge stream of the decomposition apparatus and discharging a substance having a high boiling point through a bottom discharge stream of the decomposition apparatus; a step S30 of passing a part of the bottom discharge stream of the decomposition apparatus through a reboiler and then feeding the part of the bottom discharge stream of the decomposition apparatus to the decomposition apparatus and discharging a residual stream of the bottom discharge stream of the decomposition apparatus; and a step S40 of feeding a side discharge stream of the decomposition apparatus to the reboiler.
    Type: Application
    Filed: August 11, 2020
    Publication date: April 7, 2022
    Inventors: Min Suk KANG, Sang Beom LEE, Chi Hyun JANG
  • Publication number: 20220085432
    Abstract: A lithium secondary battery according to an embodiment of the present invention includes an electrode assembly including a separation layer, and a plurality of cathodes and a plurality of anodes separated by the separation layer and repeatedly stacked, and a gas adsorption layer coated on a single surface of an outermost anode among the plurality of anodes.
    Type: Application
    Filed: September 14, 2021
    Publication date: March 17, 2022
    Inventors: Sang Han LEE, Yong Hyun CHO, Min Gu KANG, Min Suk KANG, Yoon Ji LEE
  • Patent number: 11258056
    Abstract: The present disclosure relates to a positive electrode material including a spinel-structured lithium manganese-based first positive electrode active material and a lithium nickel-manganese-cobalt-based second positive electrode active material, wherein the first positive electrode active material includes a lithium manganese oxide represented by Formula 1 and a coating layer which is disposed on a surface of the lithium manganese oxide, the second positive electrode active material is represented by Formula 2, and an average particle diameter of the second positive electrode active material is greater than an average particle diameter of the first positive electrode active material, and a positive electrode and a lithium secondary battery which include the positive electrode material: Li1+aMn2?bM1bO4?cAc??[Formula 1] Li1+x[NiyCozMnwM2v]O2?pBp??[Formula 2]
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 22, 2022
    Inventors: So Ra Baek, Wang Mo Jung, Min Suk Kang, Sang Wook Lee, Eun Sol Lho, Wen Xiu Wang
  • Publication number: 20220052331
    Abstract: A method of preparing an octahedral-structured lithium manganese-based positive electrode active material includes mixing a manganese raw material, a raw material including doping element M1, wherein the doping element M1 is at least one element selected from the group consisting of Mg, Al, Li, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au, and Si, and a lithium raw material and sintering the mixture in an oxygen atmosphere to prepare a lithium manganese oxide having an octahedral structure and doped with the doping element M1, wherein the sintering includes performing first sintering at 400° C. to 700° C. for 3 hours to 10 hours and performing second sintering at 700° C. to 900° C. for 10 hours to 20 hours. Also provided is an octahedral-structured lithium manganese-based positive electrode active material prepared by the above preparation method.
    Type: Application
    Filed: November 1, 2019
    Publication date: February 17, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Eun Sol Lho, Wang Mo Jung, Min Suk Kang, Sang Wook Lee, So Ra Baek, Wen Xiu Wang
  • Patent number: 11247958
    Abstract: The present disclosure relates to a method and an apparatus for decomposing a phenolic by-product generated in a bisphenol A preparation process, the method including: a step (S10) of feeding the phenolic by-product to a multistage reactive distillation column; a step (S20) of separating the phenolic by-product into an upper discharge stream containing an active component, a side discharge stream containing acetophenone, and a bottom discharge stream containing tar by the multistage reactive distillation column; and a step (S30) of mixing the side discharge stream discharged from the multistage reactive distillation column and the bottom discharge stream discharged from the multistage reactive distillation column to form a mixed discharge stream.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: February 15, 2022
    Assignee: LG Chem, Ltd.
    Inventors: Min Suk Kang, Sang Beom Lee, Joon Ho Shin
  • Publication number: 20220045322
    Abstract: In one arrangement, the present disclosure relates to a positive electrode active material including a nickel-cobalt-manganese-based lithium transition metal oxide which contains nickel in an amount of 60 mol % or more based on a total number of moles of metals excluding lithium, wherein the nickel-cobalt-manganese-based lithium transition metal oxide is doped with doping element M1 (where the doping element M1 is a metallic element including Al) and doping element M2 (where the doping element M2 is at least one metallic element selected from the group consisting of Mg, La, Ti, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au, and Si), where the doping element M1 can be in an amount of 100 ppm to 10,000 ppm, and the doping element M1 and the doping element M2 are included in a weight ratio of 50:50 to 99:1.
    Type: Application
    Filed: November 1, 2019
    Publication date: February 10, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Wen Xiu Wang, Wang Mo Jung, Min Suk Kang, Sang Wook Lee, So Ra Baek, Eun Sol Lho
  • Publication number: 20220020984
    Abstract: A cathode for a lithium secondary battery includes a cathode current collector, a first cathode active material layer including a first cathode active material particle, and a second cathode active material layer including a second cathode active material particle. The first cathode active material layer and the second cathode active material layer are sequentially stacked from the cathode current collector. The first cathode active material particle and the second cathode active material particle have different compositions or particle structures from each other. The first cathode active material particle and the second cathode active material particle include lithium metal oxides containing nickel. The second cathode active material particle has a single particle shape and has a particle size distribution satisfying a specific range relation.
    Type: Application
    Filed: July 15, 2021
    Publication date: January 20, 2022
    Inventors: Min Suk KANG, Min Gu KANG, Soo Ho KIM
  • Publication number: 20220020983
    Abstract: The present disclosure relates to a positive electrode active material for a secondary battery, the positive electrode active material being a lithium composite transition metal oxide particle including nickel (Ni) and cobalt (Co) and including at least one of manganese (Mn) and aluminum (Al), wherein the lithium composite transition metal oxide particle includes 60 mol % or greater of the nickel (Ni) in all metals excluding lithium, a doping element is doped on the lithium composite transition metal oxide particle, and the particle intensity of the lithium composite transition metal oxide particle is 210 MPa to 290 MPa.
    Type: Application
    Filed: November 28, 2019
    Publication date: January 20, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Eun Sol Lho, Wang Mo Jung, Min Suk Kang, Sang Wook Lee, So Ra Baek, Wen Xiu Wang
  • Publication number: 20220009868
    Abstract: The present disclosure provides a method for decomposing a phenolic by-product, the method including: a step S10 of injecting and mixing a bisphenol A by-product produced in a bisphenol A production process, a mixed by-product stream of phenol by-products produced in a phenol production process, a decomposition apparatus side discharge stream, and a process water stream in a mixing apparatus; a step S20 of injecting a mixing apparatus discharge stream discharged from the mixing apparatus into a phase separation apparatus and phase-separating the mixing apparatus discharge stream into an oil-phase stream and a liquid-phase stream; a step S30 of feeding the oil-phase stream, which is phase-separated in the step S20 and discharged from the phase separation apparatus, to a decomposition apparatus to decompose the oil-phase stream; and a step S40 of circulating the decomposition apparatus side discharge stream obtained by the decomposition in the step S30 to the mixing apparatus in the step S10.
    Type: Application
    Filed: August 11, 2020
    Publication date: January 13, 2022
    Inventors: Min Suk KANG, Sang Beom LEE, Joon Ho SHIN
  • Publication number: 20210295621
    Abstract: There is provided a method for providing driver's driving information of a user terminal device, including accessing a driving information providing server storing data generated in a driving recording device for a vehicle, receiving driving record data including event record data corresponding to a driving-related event of a driver from the driving information providing server, and displaying a driving-related event occurrence location on a map using the received driving record data. The driving-related event may include at least two or more of a lane departure event, a forward collision possibility event, a rear side collision possibility event, a sudden deceleration event, a sudden acceleration event, a sudden stop event, a sudden start event, and a speeding event.
    Type: Application
    Filed: November 12, 2020
    Publication date: September 23, 2021
    Applicant: THINKWARE CORPORATION
    Inventors: Min Suk Kang, Won Jun Heo, Seung Yo Jang, Youn Joo Shin, Tae Kyu Han
  • Publication number: 20210226210
    Abstract: The present invention provided a positive electrode active material for a lithium secondary battery including lithium cobalt oxide particles. The lithium cobalt oxide particles include lithium deficient lithium cobalt oxide having Li/Co molar ratio of less than 1, belongs to an Fd-3m space group, and having a cubic crystal structure, in surface of the particle and in a region corresponding to a distance from 0% to less than 100% from the surface of the particle relative to a distance (r) from the surface to the center of the particle. In the positive electrode active material for a lithium secondary battery according to the present invention, the intercalation and deintercalation of lithium at the surface of a particle may be easy, and the output property and rate characteristic may be improved when applied to a battery. Accordingly, good life property and the minimization of gas generation amount may be attained even with large sized positive electrode active material.
    Type: Application
    Filed: April 6, 2021
    Publication date: July 22, 2021
    Applicant: LG Chem, Ltd.
    Inventors: Chi Ho Jo, Ji Hoon Ryu, Min Suk Kang, Sun Sik Shin, Wang Mo Jung
  • Publication number: 20210221760
    Abstract: A method for decomposing a phenolic by-product generated in a phenol preparation process, the method including: adding a phenolic by-product stream, a decomposition apparatus side discharge stream, and process water to a mixing apparatus and mixing the phenolic by-product stream, the decomposition apparatus side discharge stream, and the process water; adding a mixing apparatus discharge stream discharged from the mixing apparatus to a phase separation apparatus and phase-separating the mixing apparatus discharge stream into an oil phase and an aqueous phase; feeding an oil phase stream discharged from the phase-separation apparatus and discharged to a decomposition apparatus and decomposing the oil phase stream; and circulating the decomposition apparatus side discharge stream discharged from the decomposition apparatus to the mixing apparatus.
    Type: Application
    Filed: October 15, 2019
    Publication date: July 22, 2021
    Inventors: Sang Beom Lee, Min Suk Kang, Joon Ho Shin
  • Publication number: 20210151754
    Abstract: A positive electrode active material for a secondary battery includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), and a glassy coating layer formed on surfaces of particles of the lithium composite transition metal oxide, wherein, in the lithium composite transition metal oxide, an amount of the nickel (Ni) in a total amount of transition metals is 60 mol % or more, and an amount of the manganese (Mn) is greater than an amount of the cobalt (Co), and the glassy coating layer includes a glassy compound represented by Formula 1. LiaM1bOc??[Formula 1] wherein, M1 is at least one selected from the group consisting of boron (B), aluminum (Al), silicon (Si), titanium (Ti), and phosphorus (P), and 1?a?4, 1?b?8, and 1?c?20.
    Type: Application
    Filed: January 23, 2019
    Publication date: May 20, 2021
    Applicant: LG Chem, Ltd.
    Inventors: So Ra Baek, Min Suk Kang, Sang Wook Lee, Wang Mo Jung, Dong Hun Lee, Hye Lim Jeon, Eun Sol Lho