Patents by Inventor Min-Wei Hsu

Min-Wei Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961897
    Abstract: A first fin structure is disposed over a substrate. The first fin structure contains a semiconductor material. A gate dielectric layer is disposed over upper and side surfaces of the first fin structure. A gate electrode layer is formed over the gate dielectric layer. A second fin structure is disposed over the substrate. The second fin structure is physically separated from the first fin structure and contains a ferroelectric material. The second fin structure is electrically coupled to the gate electrode layer.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hsing Hsu, Sai-Hooi Yeong, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Publication number: 20240098953
    Abstract: This application discloses electromagnetic energy mitigation assemblies and automotive vehicle components comprising the electromagnetic energy mitigation assemblies. An electromagnetic energy mitigation assembly includes a first electrically conductive layer and a second electrically conductive layer. First and second permalloy layers are along respective first and second opposite sides of the first electrically conductive layer. Third and fourth permalloy layers are along respective third and fourth opposite sides of the second electrically conductive layer. An electromagnetic noise suppression layer is sandwiched between the second and third permalloy layers. An automotive vehicle component includes an electromagnetic energy mitigation assembly configured to be positioned relative to one or more batteries of an automotive vehicle for providing electromagnetic shielding for the one or more batteries. The electromagnetic energy mitigation assembly includes a first electrically conductive layer.
    Type: Application
    Filed: August 31, 2023
    Publication date: March 21, 2024
    Inventors: Tsang-I TSAI, Yunxi SHE, Dong-Xiang LI, Jie-Sheng CHEN, Min-Wei HSU
  • Patent number: 11929314
    Abstract: In some implementations, one or more semiconductor processing tools may form a metal cap on a metal gate. The one or more semiconductor processing tools may form one or more dielectric layers on the metal cap. The one or more semiconductor processing tools may form a recess to the metal cap within the one or more dielectric layers. The one or more semiconductor processing tools may perform a bottom-up deposition of metal material on the metal cap to form a metal plug within the recess and directly on the metal cap.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsien Huang, Peng-Fu Hsu, Yu-Syuan Cai, Min-Hsiu Hung, Chen-Yuan Kao, Ken-Yu Chang, Chun-I Tsai, Chia-Han Lai, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20240072155
    Abstract: A method includes forming a transistor, which includes forming a dummy gate stack over a semiconductor region, and forming an Inter-Layer Dielectric (ILD). The dummy gate stack is in the ILD, and the ILD covers a source/drain region in the semiconductor region. The method further includes removing the dummy gate stack to form a trench in the first ILD, forming a low-k gate spacer in the trench, forming a replacement gate dielectric extending into the trench, forming a metal layer to fill the trench, and performing a planarization to remove excess portions of the replacement gate dielectric and the metal layer to form a gate dielectric and a metal gate, respectively. A source region and a drain region are then formed on opposite sides of the metal gate.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Kuo-Hua Pan, Je-Wei Hsu, Hua Feng Chen, Jyun-Ming Lin, Chen-Huang Peng, Min-Yann Hsieh, Java Wu
  • Publication number: 20240069299
    Abstract: An optical element driving mechanism includes a movable assembly, a fixed assembly, and a driving assembly. The movable assembly is configured to be connected to an optical element. The movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly in a range of motion. The optical element driving mechanism further includes a positioning assembly configured to position the movable assembly at a predetermined position relative to the fixed assembly when the driving assembly is not operating.
    Type: Application
    Filed: November 9, 2023
    Publication date: February 29, 2024
    Inventors: Chao-Chang HU, Kuen-Wang TSAI, Liang-Ting HO, Chao-Hsi WANG, Chih-Wei WENG, He-Ling CHANG, Che-Wei CHANG, Sheng-Zong CHEN, Ko-Lun CHAO, Min-Hsiu TSAI, Shu-Shan CHEN, Jungsuck RYOO, Mao-Kuo HSU, Guan-Yu SU
  • Patent number: 11731224
    Abstract: Disclosed are systems for applying materials to components. The system comprises a tool operable for transferring a portion of a material from a supply of the material to a component. A first portion of the tool may be configured for cutting along a side or edge of the portion of the material. A second portion of the tool may be configured for tamping, pressing, or pushing against the portion of the material to cause uncut sides or edges of the portion of the material attached to the supply of the material to be torn, severed, detached, or separated from the supply of the material.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: August 22, 2023
    Assignee: Laird Technologies, Inc.
    Inventors: Tsang-I Tsai, Yi-Shen Lin, Min-Wei Hsu, Chen-Xi Yu
  • Publication number: 20220186835
    Abstract: An electrically and thermally conductive gasket includes a resilient core including a plurality of sides, a heat spreader disposed along at least two sides of the plurality of sides of the resilient core, and an electrically conductive layer disposed along and/or covering at least a portion of the heat spreader, such that the portion of the heat spreader is between the resilient core and the electrically conductive layer. The gasket is positionable and/or compressible between first and second surfaces to thereby define an electrically conductive path and a thermally conductive path between the first and second surfaces.
    Type: Application
    Filed: November 23, 2021
    Publication date: June 16, 2022
    Inventors: Yi-Shen LIN, Min-Wei HSU, Tsang-I TSAI
  • Publication number: 20220023984
    Abstract: Disclosed are systems for applying materials to components. The system comprises a tool operable for transferring a portion of a material from a supply of the material to a component. A first portion of the tool may be configured for cutting along a side or edge of the portion of the material. A second portion of the tool may be configured for tamping, pressing, or pushing against the portion of the material to cause uncut sides or edges of the portion of the material attached to the supply of the material to be torn, severed, detached, or separated from the supply of the material.
    Type: Application
    Filed: October 8, 2021
    Publication date: January 27, 2022
    Inventors: Tsang-I TSAI, Yi-Shen LIN, Min-Wei HSU, Chen-Xi YU
  • Patent number: 11141823
    Abstract: Disclosed are systems for applying materials to components. The system comprises a tool operable for transferring a portion of a material from a supply of the material to a component. A first portion of the tool may be configured for cutting along a side or edge of the portion of the material. A second portion of the tool may be configured for tamping, pressing, or pushing against the portion of the material to cause uncut sides or edges of the portion of the material attached to the supply of the material to be torn, severed, detached, or separated from the supply of the material.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 12, 2021
    Assignee: Laird Technologies, Inc.
    Inventors: Tsang-I Tsai, Yi-Shen Lin, Min-Wei Hsu, Chen-Xi Yu
  • Publication number: 20190329367
    Abstract: Disclosed are systems for applying materials to components. The system comprises a tool operable for transferring a portion of a material from a supply of the material to a component. A first portion of the tool may be configured for cutting along a side or edge of the portion of the material. A second portion of the tool may be configured for tamping, pressing, or pushing against the portion of the material to cause uncut sides or edges of the portion of the material attached to the supply of the material to be torn, severed, detached, or separated from the supply of the material.
    Type: Application
    Filed: May 10, 2018
    Publication date: October 31, 2019
    Inventors: Tsang-I TSAI, Yi-Shen LIN, Min-Wei HSU, Chen-Xi YU
  • Patent number: 8968861
    Abstract: Disclosed are exemplary embodiments of a flame retardant, electrically conductive adhesive material. In an exemplary embodiment, a flame retardant, electrically conductive adhesive material suitable for use as tape generally includes a layer of adhesive. A layer of electrically conductive fabric is on the layer of adhesive. A flame retardant coating is on the layer of electrically conductive fabric. The flame retardant coating includes a carbon-containing resin.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: March 3, 2015
    Assignee: Laird Technologies, Inc.
    Inventors: Larry Don Creasy, Jr., Min-Wei Hsu, Yishen Lin
  • Publication number: 20140272351
    Abstract: Disclosed are exemplary embodiments of a flame retardant, electrically conductive adhesive material. In an exemplary embodiment, a flame retardant, electrically conductive adhesive material suitable for use as tape generally includes a layer of adhesive. A layer of electrically conductive fabric is on the layer of adhesive. A flame retardant coating is on the layer of electrically conductive fabric. The flame retardant coating includes a carbon-containing resin.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 18, 2014
    Applicant: Laird Technologies, Inc.
    Inventors: Larry Don Creasy, JR., Min-Wei Hsu, Yishen Lin