Patents by Inventor Min-Yi Shih

Min-Yi Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8576406
    Abstract: A method of constructing a non-imaging beam transformer includes reducing a tailored illumination function from a predetermined light source to a source point response illumination function; calculating a plurality of transformation pairs for the predetermined light source, the transformation pairs identifying the radii of illumination of the light source at given source output angles; determining a desired lighting profile for light output at a region of interest to be illuminated by the beam transformer; determining a surface profile of a surface of the beam transformer such that for given output angles of the light source, the transformation pairs at those output angles are satisfied to correspond to the desired lighting profile; and constructing the beam transformer having the surface profile determined based on the transformation pairs. The method can include characterizing a specific angular output distribution of a light source to calculate the transformation pairs.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: November 5, 2013
    Assignee: Physical Optics Corporation
    Inventors: Tomasz Jannson, Ilya Agurok, Thomas Forrester, Ranjit Pradhan, Min-Yi Shih
  • Publication number: 20120250121
    Abstract: The present invention provides a holographic storage apparatus comprising a polarizing beam splitter configured to split an incoming beam into an object beam and a reference beam; a first spatial light modulator configured to modulate the object beam with an array of data; a second spatial light modulator configured to phase modulate the reference beam with an orthogonal phase function; a holographic medium configured to record an interference pattern between the modulated object beam and the modulated reference beam; a first image sensor configured to read an image of the modulated object beam; and a second image sensor configured to read an image of the modulated reference beam.
    Type: Application
    Filed: May 8, 2012
    Publication date: October 4, 2012
    Inventors: Tin Maung Aye, Tomasz Jannson, Andrew Kostrzewski, Min-Yi Shih
  • Patent number: 8199387
    Abstract: The present invention provides a holographic storage apparatus comprising a polarizing beam splitter configured to split an incoming beam into an object beam and a reference beam; a first spatial light modulator configured to modulate the object beam with an array of data; a second spatial light modulator configured to phase modulate the reference beam with an orthogonal phase function; a holographic medium configured to record an interference pattern between the modulated object beam and the modulated reference beam; a first image sensor configured to read an image of the modulated object beam; and a second image sensor configured to read an image of the modulated reference beam.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: June 12, 2012
    Assignee: Physical Optics Corporation
    Inventors: Tin Maung Aye, Tomasz Jannson, Andrew Kostrzewski, Min-Yi Shih
  • Patent number: 7776236
    Abstract: A method of forming a waveguide including a core region, a cladding region, and an index contrast region situated therebetween includes depositing a polymerizable composite on a substrate to form a layer, patterning the layer to define an exposed area and an unexposed area of the layer, irradiating the exposed area of the layer, and volatilizing the uncured monomer to form the waveguide, wherein the polymerizable composite includes a polymer binder and sufficient quantities of an uncured monomer to diffuse into the exposed area of the layer and form the index contrast region. The resulting waveguide includes an index contrast region which has a lower index of refraction than that of the core and cladding regions.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: August 17, 2010
    Assignee: General Electric Company
    Inventors: Min-Yi Shih, Thomas Bert Gorczyca
  • Patent number: 7692785
    Abstract: A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 6, 2010
    Assignee: General Electric Company
    Inventors: Willam Scott Sutherland, Anis Zribi, Long Que, Glenn Scott Claydon, Stacey Joy Kennerly, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar Chandrasekaran, David Cecil Hays, Victor Samper, Dirk Lange, Marko Baller, Min-Yi Shih, Sandip Maity
  • Patent number: 7627357
    Abstract: A method for determining analyte concentration levels is provided. The method includes acquiring radiation scattered off or transmitted by a target, analyzing at least a first portion of the radiation via a first technique to generate a first measurement of analyte concentration levels, and analyzing at least a second portion of the radiation via a second technique to generate a second measurement of analyte concentration levels. The method further determines analyte concentration levels based on at least one of the first measurement or the second measurement. In addition, a system for implementing the method and a probe for measuring and monitoring the analyte concentration levels is provided.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: December 1, 2009
    Assignee: General Electric Company
    Inventors: Anis Zribi, Peter Joseph Codella, Min-Yi Shih, Ganesh Chandan Gangadharan, Rui Chen
  • Patent number: 7615009
    Abstract: A system and method for optical transmission of ultrasound data signals from a probe to an image processing system is provided. By using a silicon-based optical modulator to encode ultrasound data signals onto an optical signal, an optical transmission link between the ultrasound probe and the image processing system can achieve a high signal to noise ratio with a lower power input.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 10, 2009
    Assignee: General Electric Company
    Inventors: Glen P. Koste, Samhita Dasgupta, Matthew Christian Nielsen, Min-Yi Shih, Robert John Filkins, Todd Ryan Tolliver, Bruno Hans Haider
  • Publication number: 20090201497
    Abstract: An optofluidic device is provided. The device includes a cladding region having a first refractive index, and a channel defined by the cladding region such that the cladding region forms an inner surface or an interface of the channel. The channel is configured to house one or more of a liquid, a solid, a gas, a colloidal, or a suspension sample, wherein the sample has a second refractive index, where the channel is configured to guide radiation, and where the first refractive index is lower than the second refractive index.
    Type: Application
    Filed: April 10, 2006
    Publication date: August 13, 2009
    Inventors: Anis Zribi, Wei-Cheng Tian, Yuan-Hsiang Lee, Min-Yi Shih
  • Patent number: 7574089
    Abstract: An optofluidic device is provided. The device includes a cladding region having a first refractive index, and a channel defined by the cladding region such that the cladding region forms an inner surface or an interface of the channel. The channel is configured to house one or more of a liquid, a solid, a gas, a colloidal, or a suspension sample, wherein the sample has a second refractive index, where the channel is configured to guide radiation, and where the first refractive index is lower than the second refractive index.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: August 11, 2009
    Assignee: GE Homeland Protection, Inc.
    Inventors: Anis Zribi, Wei-Cheng Tian, Yuan-Hsiang Lee, Min-Yi Shih
  • Publication number: 20080239306
    Abstract: A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Scott Sutherland, Anis Zribi, Long Que, Glenn Scott Claydon, Stacey Joy Kennerly, Ayan Banerjee, Shivappa Ningappa Goravar, Shankar Chandrasekaran, David Cecil Hays, Victor Samper, Dirk Lange, Marko Baller, Min-Yi Shih, Sandip Maity
  • Patent number: 7428055
    Abstract: A interferometer-based fouling detection system and method are described. The system may include a fiber optic cable, a light source in communication with the fiber optic cable, at least one photo detector in communication with the fiber optic cable, and at least one interferometric spectrometer. The fiber optic cable may include a long period grating and a fiber Bragg grating or it may include a facet edge. The system may instead include a fiber optic cable, a light source in communication with the fiber optic cable, at least one photo detector in communication with the fiber optic cable, a fiber coupler, a reference probe including a mirror, a sample probe, and an interferometer.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: September 23, 2008
    Assignee: General Electric Company
    Inventors: Anis Zribi, Min-Yi Shih, Guiju Song, Ajit Achuthan, Glenn Scott Claydon, Stacey Joy Kennerly, Kuna Venkat Satya Rama Kishore, Jianming Zheng, Kevin George Harding, Hua Xia
  • Patent number: 7402808
    Abstract: An imaging system for generating an image of an object is provided. The imaging system comprises an X-ray source disposed in a spatial relationship to the object configured to transmit X-ray radiation through the object. The system further comprises at least one X-ray detecting media configured to convert the X-ray radiation transmitted through the object to optical signals. In addition, the system comprises an optical transmission conduit comprising a first end and a second end and an optical detector configured to convert optical signals to corresponding electrical signals. The first end of the optical transmission conduit is coupled to the X-ray detection device and the second end coupled to the optical detector.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: July 22, 2008
    Assignee: General Electric Company
    Inventors: James Wilson Rose, William Edward Burdick, Jr., James Scott Vartuli, Min-Yi Shih, Samhita Dasgupta
  • Patent number: 7369727
    Abstract: An electromagnetic coupler comprising: a coupling waveguide adapted for receiving input modes along an input axis, propagating coupling modes along a coupling axis, and transmitting output modes along an output axis, the output axis being not parallel to the coupling axis; and an output waveguide disposed adjacent the coupling waveguide and adapted for receiving the output modes.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: May 6, 2008
    Assignee: General Electric Company
    Inventors: Min-Yi Shih, Kelvin Ma, Matthew Christian Nielsen, Samhita Dasgupta
  • Patent number: 7367945
    Abstract: An ultrasound system includes an ultrasound probe configured for sensing and transmitting ultrasound signals. The ultrasound system further includes an optical conduit configured for coupling a light source and an optical detector in an optical path. The optical conduit includes electro-optic modulators configured for modulating optical signals on the optical conduit with at least one of the electrical signals configured to generate corresponding optically modulated analog signals on the optical conduit. In one example, the electro-optic modulators comprise electro-optic polymer modulators.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: May 6, 2008
    Assignee: General Electric Company
    Inventors: Samhita Dasgupta, Matthew Christian Nielsen, Min-Yi Shih, Robert John Filkins, Todd Ryan Tolliver, Bruno Hans Haider
  • Publication number: 20080084565
    Abstract: A interferometer-based fouling detection system and method are described. The system may include a fiber optic cable, a light source in communication with the fiber optic cable, at least one photo detector in communication with the fiber optic cable, and at least one interferometric spectrometer. The fiber optic cable may include a long period grating and a fiber Bragg grating or it may include a facet edge. The system may instead include a fiber optic cable, a light source in communication with the fiber optic cable, at least one photo detector in communication with the fiber optic cable, a fiber coupler, a reference probe including a mirror, a sample probe, and an interferometer.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Anis Zribi, Min-Yi Shih, Guiju Song, Ajit Achuthan, Glenn Scott Claydon, Stacey Joy Kennerly, Kuna Venkat Satya Rama Kishore, Jianming Zheng, Kevin George Harding, Hua Xia
  • Publication number: 20080055604
    Abstract: A method for determining deflection of an optical sensor having an optical cavity includes: providing an optical signal including a train of time spaced light pulses, each light pulse including a known set of wavelengths; splitting the optical signal and providing a portion of the optical signal to a reference path; detecting light pulses in the portion of the optical signal; using a remaining portion of the optical signal and interrogating the sensor; receiving a reflected optical signal from the sensor; detecting light pulses in the reflected optical signal; and analyzing the portion of the optical signal and the reflected optical signal to determine the deflection. Corresponding apparatus and computer program products are provided.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 6, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jonathan Josef Sapan, Min-Yi Shih, Samhita Dasgupta, Aaron Jay Knobloch
  • Patent number: 7316512
    Abstract: An apparatus is provided that includes a substrate having a top surface, at least one optical data transport medium coupled to the substrate, one or more lens devices coupled to the substrate, and one or more reflective devices coupled to the substrate. The one or more lens devices and the one or more reflective devices are at least partially passively aligned with the at least one optical transport medium by use of one or more pins.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: January 8, 2008
    Assignee: General Electric Company
    Inventors: Min-Yi Shih, Christopher James Kapusta, William Paul Kornrumpf, Matthew Christian Nielsen, Samhita Dasgupta, Eric Michael Breitung
  • Patent number: 7266269
    Abstract: A power harvesting module comprises at least one electromagnetic (EM) radiation intensity modulator configured to receive a first EM radiation from at least one source and at least one energy converter configured to at least partially convert the energy of the first EM radiation during modulation into electrical energy.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 4, 2007
    Assignee: General Electric Company
    Inventors: Glen Peter Koste, Min-Yi Shih, Todd Ryan Tolliver
  • Publication number: 20070167816
    Abstract: A system and method for optical transmission of ultrasound data signals from a probe to an image processing system is provided. By using a silicon-based optical modulator to encode ultrasound data signals onto an optical signal, an optical transmission link between the ultrasound probe and the image processing system can achieve a high signal to noise ratio with a lower power input.
    Type: Application
    Filed: February 22, 2007
    Publication date: July 19, 2007
    Inventors: Glen Koste, Samhita Dasgupta, Matthew Nielsen, Min-Yi Shih, Robert Filkins, Todd Tolliver, Bruno Haider
  • Publication number: 20070004975
    Abstract: A method for determining analyte concentration levels is provided. The method includes acquiring radiation scattered off or transmitted by a target, analyzing at least a first portion of the radiation via a first technique to generate a first measurement of analyte concentration levels, and analyzing at least a second portion of the radiation via a second technique to generate a second measurement of analyte concentration levels. The method further determines analyte concentration levels based on at least one of the first measurement or the second measurement. In addition, a system for implementing the method and a probe for measuring and monitoring the analyte concentration levels is provided.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 4, 2007
    Inventors: Anis Zribi, Peter Codella, Min-Yi Shih, Ganesh Gangadharan, Rui Chen