Patents by Inventor Min-Ying Tsai

Min-Ying Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12191191
    Abstract: The present disclosure provides a semiconductor structure, including a first semiconductor device having a first surface and a second surface, the second surface being opposite to the first surface, a semiconductor substrate over the first surface of the first semiconductor device, and a III-V etch stop layer in contact with the second surface of the first semiconductor device. The present disclosure also provides a manufacturing method of a semiconductor structure, including providing a temporary substrate having a first surface, forming a III-V etch stop layer over the first surface, forming a first semiconductor device over the etch stop layer, and removing the temporary substrate by an etching operation and exposing a surface of the III-V etch stop layer.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: January 7, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Min-Ying Tsai, Yeur-Luen Tu
  • Publication number: 20240387614
    Abstract: Some implementations described herein provide a semiconductor device and methods of formation. The semiconductor device may include a photodiode device electrically connected to a metal-insulator-metal deep-trench capacitor. The metal-insulator-metal deep-trench capacitor includes a layer of an amorphous material between an insulator layer stack of the deep-trench capacitor structure and a capacitor bottom metal layer of the metal-insulator-metal deep-trench capacitor. The amorphous material includes a bandgap energy level that provides a conduction band offset and lowers a probability of electron tunneling from the capacitor bottom metal electrode layer to the insulator layer stack. In this way, leakage associated with grain boundaries, crystal defects, and interfaces of a bottom layer of the insulator layer stack may be overcome to improve a lag performance of the semiconductor device including the metal-insulator-metal deep-trench capacitor.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Min-Ying TSAI, Chih-Ping CHANG, Ching I LI
  • Publication number: 20240387242
    Abstract: The present disclosure provides a semiconductor structure, including a first semiconductor device having a first surface and a second surface, the second surface being opposite to the first surface, a semiconductor substrate over the first surface of the first semiconductor device, and a III-V etch stop layer in contact with the second surface of the first semiconductor device. The present disclosure also provides a manufacturing method of a semiconductor structure, including providing a temporary substrate having a first surface, forming a III-V etch stop layer over the first surface, forming a first semiconductor device over the III-V etch stop layer, and removing the temporary substrate by an etching operation and exposing a surface of the III-V etch stop layer.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: Min-Ying Tsai, Yeur-Luen Tu
  • Publication number: 20240387578
    Abstract: An image sensor device is disclosed. The image sensor device includes: a substrate having a front surface and a back surface; two adjacent radiation-sensing regions formed in the substrate; and a trench isolation structure extending from the back surface of the substrate into the substrate between the two adjacent radiation-sensing regions. The trench isolation structure includes: a dielectric material; a first film being formed between the dielectric material and the substrate; a second film being formed between the first film and the dielectric material; and a third film being formed between the second film and the dielectric material. An electronegativity of the first film, an electronegativity of the second film and an electronegativity of the third film are different from each other.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: CHIH-YU LAI, MIN-YING TSAI, YEUR-LUEN TU, HAI-DANG TRINH, CHENG-YUAN TSAI
  • Publication number: 20240379713
    Abstract: The present disclosure relates to an image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within an image sensing die and respectively comprises a photodiode configured to convert radiation into an electrical signal. The photodiode comprises a photodiode doping column with a first doping type surrounded by a photodiode doping layer with a second doping type that is different than the first doping type. A BDTI structure is disposed between adjacent pixel regions and extending from the back-side of the image sensor die to a position within the photodiode doping layer. The BDTI structure comprises a doped liner with the second doping type and a dielectric fill layer. The doped liner lines a sidewall surface of the dielectric fill layer.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Yu-Hung Cheng, Chun-Tsung Kuo, Jiech-Fun Lu, Min-Ying Tsai, Chiao-Chun Hsu, Ching I Li
  • Publication number: 20240363671
    Abstract: A method includes performing an anisotropic etching on a semiconductor substrate to form a trench. The trench has vertical sidewalls and a rounded bottom connected to the vertical sidewalls. A damage removal step is performed to remove a surface layer of the semiconductor substrate, with the surface layer exposed to the trench. The rounded bottom of the trench is etched to form a slant straight bottom surface. The trench is filled to form a trench isolation region in the trench.
    Type: Application
    Filed: July 10, 2024
    Publication date: October 31, 2024
    Inventors: Cheng-Hsien Chou, Chih-Yu Lai, Shih Pei Chou, Yen-Ting Chiang, Hsiao-Hui Tseng, Min-Ying Tsai
  • Patent number: 12087801
    Abstract: A method includes performing an anisotropic etching on a semiconductor substrate to form a trench. The trench has vertical sidewalls and a rounded bottom connected to the vertical sidewalls. A damage removal step is performed to remove a surface layer of the semiconductor substrate, with the surface layer exposed to the trench. The rounded bottom of the trench is etched to form a slant straight bottom surface. The trench is filled to form a trench isolation region in the trench.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: September 10, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hsien Chou, Chih-Yu Lai, Shih Pei Chou, Yen-Ting Chiang, Hsiao-Hui Tseng, Min-Ying Tsai
  • Patent number: 12080738
    Abstract: An image sensor device is disclosed. The image sensor device includes: a substrate having a front surface and a back surface; a radiation-sensing region formed in the substrate; an opening extending from the back surface of the substrate into the substrate; a first metal oxide film including a first metal, the first metal oxide film being formed on an interior surface of the opening; and a second metal oxide film including a second metal, the second metal oxide film being formed over the first metal oxide film; wherein the electronegativity of the first metal is greater than the electronegativity of the second metal. An associated fabricating method is also disclosed.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: September 3, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Yu Lai, Min-Ying Tsai, Yeur-Luen Tu, Hai-Dang Trinh, Cheng-Yuan Tsai
  • Publication number: 20240170524
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a first substrate having a front-side and a back-side opposite the front-side. A first doped region is in the first substrate and extends continuously from the front-side to the back-side. A conductive contact is over the first doped region. A conductive layer is between the first doped region and the conductive contact. The first doped region abuts a lower surface and sides of the conductive layer.
    Type: Application
    Filed: February 1, 2024
    Publication date: May 23, 2024
    Inventors: Min-Ying Tsai, Cheng-Ta Wu, Yeur-Luen Tu
  • Patent number: 11929379
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip, the method includes forming a through substrate via (TSV) in a first substrate. The TSV continuously extends from a first surface of the first substrate to a second surface of the first substrate. A conductive contact is formed on the second surface of the first substrate. The conductive contact comprises a first conductive layer disposed on the TSV. An upper conductive layer is formed between the conductive contact and the TSV. The upper conductive layer comprises a silicide of a conductive material of the first conductive layer.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Ying Tsai, Cheng-Ta Wu, Yeur-Luen Tu
  • Publication number: 20240021642
    Abstract: The present disclosure relates to an image sensor comprising a substrate. A photodetector is in the substrate. A trench is in the substrate and is defined by sidewalls and an upper surface of the substrate. A first isolation layer extends along the sidewalls and the upper surface of the substrate that define the trench. The first isolation layer comprises a first dielectric material. A second isolation layer is over the first isolation layer. The second isolation layer lines the first isolation layer. The second isolation layer comprises a second dielectric material. A third isolation layer is over the second isolation layer. The third isolation layer fills the trench and lines the second isolation layer. The third isolation layer comprises a third material. A ratio of a first thickness of the first isolation layer to a second thickness of the second isolation layer is about 0.17 to 0.38.
    Type: Application
    Filed: July 20, 2023
    Publication date: January 18, 2024
    Inventors: Min-Ying Tsai, Cheng-Te Lee, Rei-Lin Chu, Ching I Li, Chung-Yi Yu
  • Patent number: 11869761
    Abstract: The present disclosure relates to an image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within an image sensing die and respectively comprises a photodiode configured to convert radiation into an electrical signal. The photodiode comprises a photodiode doping column with a first doping type surrounded by a photodiode doping layer with a second doping type that is different than the first doping type. A BDTI structure is disposed between adjacent pixel regions and extending from the back-side of the image sensing die to a position within the photodiode doping layer. The BDTI structure comprises a doped liner with the second doping type and a dielectric fill layer. The doped liner lines a sidewall surface of the dielectric fill layer.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: January 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Chun-Tsung Kuo, Jiech-Fun Lu, Min-Ying Tsai, Chiao-Chun Hsu, Ching I Li
  • Publication number: 20230411425
    Abstract: In some embodiments, the present disclosure relates to a method for forming an integrated chip (IC), including forming a plurality of image sensing elements including a first doping type within a substrate, performing a first removal process to form deep trenches within the substrate, the deep trenches separating the plurality of image sensing elements from one another, performing an epitaxial growth process to form an isolation epitaxial precursor including a first material within the deep trenches and to form a light absorbing layer including a second material different than the first material within the deep trenches and between sidewalls of the isolation epitaxial precursor, performing a dopant activation process on the light absorbing layer and the isolation epitaxial precursor to form a doped isolation layer including a second doping type opposite the first doping type, and filling remaining portions of the deep trenches with an isolation filler structure.
    Type: Application
    Filed: August 3, 2023
    Publication date: December 21, 2023
    Inventors: Yu-Hung Cheng, Ching I Li, Yu-Siang Fang, Yu-Yao Hsia, Min-Ying Tsai
  • Publication number: 20230402487
    Abstract: A Deep Trench Isolation (DTI) structure is disclosed. The DTI structures according to embodiments of the present disclosure include a composite passivation layer. In some embodiments, the composite passivation layer includes a hole accumulation layer and a defect repairing layer. The defect repairing layer is disposed between the hole accumulation layer and a semiconductor substrate in which the DTI structure is formed. The defect repairing layer reduces lattice defects in the interface, thus, reducing the density of interface trap (DIT) at the interface. Reduced density of interface trap facilitates strong hole accumulation, thus increasing the flat band voltage. In some embodiments, the hole accumulation layer according to the present disclosure is enhanced by an oxidization treatment.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 14, 2023
    Inventors: Bi-Shen LEE, Chia-Wei HU, Hai-Dang TRINH, Min-Ying TSAI, Ching I LI, Hsun-Chung KUANG, Cheng-Yuan TSAI
  • Publication number: 20230378217
    Abstract: The present disclosure relates to an image sensor having an epitaxial deposited photodiode structure surrounded by an isolation structure, and an associated method of formation. In some embodiments, a first epitaxial deposition process is performed to form a first doped EPI layer over a substrate. The first doped EPI layer is of a first doping type. Then, a second epitaxial deposition process is performed to form a second doped EPI layer on the first doped photodiode layer. The second doped EPI layer is of a second doping type opposite from the first doping type. Then, an isolation structure is formed to separate the first doped EPI layer and the second photodiode as a plurality of photodiode structures within a plurality of pixel regions. The plurality of photodiode structures is configured to convert radiation that enters from a first side of the image sensor into an electrical signal.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 23, 2023
    Inventors: Min-Ying Tsai, Ching I Li
  • Patent number: 11817469
    Abstract: In some embodiments, the present disclosure relates to a method for forming an integrated chip (IC), including forming a plurality of image sensing elements including a first doping type within a substrate, performing a first removal process to form deep trenches within the substrate, the deep trenches separating the plurality of image sensing elements from one another, performing an epitaxial growth process to form an isolation epitaxial precursor including a first material within the deep trenches and to form a light absorbing layer including a second material different than the first material within the deep trenches and between sidewalls of the isolation epitaxial precursor, performing a dopant activation process on the light absorbing layer and the isolation epitaxial precursor to form a doped isolation layer including a second doping type opposite the first doping type, and filling remaining portions of the deep trenches with an isolation filler structure.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Ching I Li, Yu-Siang Fang, Yu-Yao Hsia, Min-Ying Tsai
  • Publication number: 20230361164
    Abstract: Some implementations described herein provide a semiconductor device and methods of formation. The semiconductor device may include a photodiode device electrically connected to a metal-insulator-metal deep-trench capacitor. The metal-insulator-metal deep-trench capacitor includes a layer of an amorphous material between an insulator layer stack of the deep-trench capacitor structure and a capacitor bottom metal layer of the metal-insulator-metal deep-trench capacitor. The amorphous material includes a bandgap energy level that provides a conduction band offset and lowers a probability of electron tunneling from the capacitor bottom metal electrode layer to the insulator layer stack. In this way, leakage associated with grain boundaries, crystal defects, and interfaces of a bottom layer of the insulator layer stack may be overcome to improve a lag performance of the semiconductor device including the metal-insulator-metal deep-trench capacitor.
    Type: Application
    Filed: May 9, 2022
    Publication date: November 9, 2023
    Inventors: Min-Ying TSAI, Chih-Ping CHANG, Ching I LI
  • Patent number: 11784204
    Abstract: The present disclosure relates to an image sensor comprising a substrate. A photodetector is in the substrate. A trench is in the substrate and is defined by sidewalls and an upper surface of the substrate. A first isolation layer extends along the sidewalls and the upper surface of the substrate that define the trench. The first isolation layer comprises a first dielectric material. A second isolation layer is over the first isolation layer. The second isolation layer lines the first isolation layer. The second isolation layer comprises a second dielectric material. A third isolation layer is over the second isolation layer. The third isolation layer fills the trench and lines the second isolation layer. The third isolation layer comprises a third material. A ratio of a first thickness of the first isolation layer to a second thickness of the second isolation layer is about 0.17 to 0.38.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: October 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min-Ying Tsai, Cheng-Te Lee, Rei-Lin Chu, Ching I Li, Chung-Yi Yu
  • Patent number: 11545513
    Abstract: In some embodiments, a method is provided. The method includes forming a plurality of trenches in a semiconductor substrate, where the trenches extend into the semiconductor substrate from a back-side of the semiconductor substrate. An epitaxial layer comprising a dopant is formed on lower surfaces of the trenches, sidewalls of the trenches, and the back-side of the semiconductor substrate, where the dopant has a first doping type. The dopant is driven into the semiconductor substrate to form a first doped region having the first doping type along the epitaxial layer, where the first doped region separates a second doped region having a second doping type opposite the first doping type from the sidewalls of the trenches and from the back-side of the semiconductor substrate. A dielectric layer is formed over the back-side of the semiconductor substrate, where the dielectric layer fill the trenches to form back-side deep trench isolation structures.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Shyh-Fann Ting, Yen-Ting Chiang, Yeur-Luen Tu, Min-Ying Tsai
  • Publication number: 20220384496
    Abstract: The present disclosure relates to an image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within an image sensing die and respectively comprises a photodiode configured to convert radiation into an electrical signal. The photodiode comprises a photodiode doping column with a first doping type surrounded by a photodiode doping layer with a second doping type that is different than the first doping type. A BDTI structure is disposed between adjacent pixel regions and extending from the back-side of the image sensor die to a position within the photodiode doping layer. The BDTI structure comprises a doped liner with the second doping type and a dielectric fill layer. The doped liner lines a sidewall surface of the dielectric fill layer.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Yu-Hung Cheng, Chun-Tsung Kuo, Jiech-Fun Lu, Min-Ying Tsai, Chiao-Chun Hsu, Ching I Li