Patents by Inventor Min Yue

Min Yue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10611644
    Abstract: The present invention discloses an equipment and process for preparing silicon oxides, and relates to the field of chemical equipments. Said equipment comprises at least one tank having opening(s) at at least one end thereof and comprising a reaction unit and a collection unit, wherein the reaction unit is used for placing raw materials therein; and the collection unit is used for placing a collector therein which is placed at the opening end of the tank; and the reaction unit is placed away from the opening end of the tank and placed inside a heating furnace; the collection unit and opening(s) are both placed outside the heating furnace; the tank is vacuumized via a port; and a tank lid is used for opening or closing the opening(s) of the tank. The preparation process uses such equipment. The present invention solves the problems of great energy consumption and low efficiency caused by the fact that the previous equipment and process for preparing silicon oxides are unable to achieve continuous production.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: April 7, 2020
    Assignee: BTR New Material Group Co., Ltd.
    Inventors: Chunlei Pang, Jianguo Ren, Min Yue
  • Publication number: 20200058924
    Abstract: Disclosed in the present application is a compound, comprising nano silicon, a lithium-containing compound and a carbon coating, or comprising nano silicon, silicon oxide, a lithium-containing compound, and a carbon coating. The method comprises: (1) solid-phase mixing of carbon coated silicon oxide with a lithium source; and (2) preforming heat-treatment of the pre-lithium precursor obtained in step (1) in a vacuum or non-oxidising atmosphere to obtain a compound. The method is simple, and has low equipment requirements and low costs; the obtained compound has a stable structure and the structure and properties do not deteriorate during long-term storage, a battery made of cathode material containing said compound exhibits high delithiation capacity, high initial coulombic efficiency, and good recycling properties, the charging capacity is over 1920 mAh/g, the discharging capacity is over 1768 mAh/g, and the initial capacity is over 90.2%.
    Type: Application
    Filed: February 27, 2018
    Publication date: February 20, 2020
    Inventors: Chunlei Pang, Lijuan Qu, Jianguo Ren, Min Yue
  • Patent number: 10522834
    Abstract: A multiple-element composite material for negative electrodes, a preparation method therefor, and a lithium-ion battery using the negative electrode material. The lithium-ion battery uses multiple-element composite material for negative electrodes has a core-shell structure containing multiple shell layers. The inner core consists of graphite and nano-active matter coating the surface of the graphite. The outer layers of the inner core are in order: the first shell layer is of an electrically conductive carbon material, the second shell layer is of a nano-active matter, and the third shell layer is an electrically conductive carbon material coating layer.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: December 31, 2019
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Min Yue, Peng He, Sheng Li, Jianguo Ren, Youyuan Huang
  • Patent number: 10170753
    Abstract: The present invention relates to a nano-silicon composite negative electrode material, including graphite matrix and nano-silicon material homogeneously deposited inside the graphite matrix, wherein the nano-silicon composite negative electrode material is prepared by using silicon source to chemical-vapor deposit nano-silicon particles inside hollowed graphite. The nano-silicon composite negative electrode material of the present invention has features of high specific capacity (higher than 1000 mAh/g), high initial charge-discharge efficiency (higher than 93%) and high conductivity. The preparation process of the present invention is easy to operate and control, and has low production cost and is suitable for industrial production.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: January 1, 2019
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Jianguo Ren, Min Yue, Youyuan Huang, Xueqin He
  • Patent number: 10170754
    Abstract: The present invention relates to a silicon monoxide composite negative electrode material, which comprises silicon monoxide substrate. Nano-Silicon material uniformly deposited on the silicon monoxide substrate and nanoscale conductive material coating layer on the surface of the silicon monoxide/Nano-Silicon. The preparation method of the silicon monoxide composite negative electrode material includes Nano-Silicon chemistry vapor deposition, nanoscale conductive material coating modification, screening and demagnetizing. The silicon monoxide composite negative electrode material has properties of high specific capacity (>1600 mAh/g), high charge-discharge efficiency of the first cycle (>80%) and high conductivity.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 1, 2019
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Jianguo Ren, Dexin Yu, Min Yue
  • Publication number: 20180375094
    Abstract: Disclosed is a composite silicon negative electrode material. The composite silicon negative electrode material comprises a nano silicon (1), a nano composite layer (5) coated on the surface of the nano silicon, and a conductive carbon layer (4) uniformly coated outside the nano composite layer (5). The nano composite layer (5) is a silicon oxide (2) and a metal alloy (3).
    Type: Application
    Filed: September 22, 2016
    Publication date: December 27, 2018
    Inventors: Peng He, Sheng Li, Min Yue, Eming Guo
  • Patent number: 10096822
    Abstract: A lithium ion battery graphite negative electrode material and preparation method thereof. The lithium ion battery graphite negative electrode material is a composite material including graphite substrates, surface coating layers coated on the graphite substrates and carbon nanotubes and/or carbon nanofibers grown in situ on the surface of the surface coating layers. The preparation method thereof includes, in solid phase or liquid phase circumstance, the coated carbon material precursor forms the surface coating layer of amorphous carbon by carbonization, and then carbon nanotubes and/or carbon nanofibers having high conductive performance are formed on the surface of the surface coating layers by vapor deposition. This coating mode of the combination of solid phase with gas phase or of liquid phase and gas phase makes the amorphous carbon formed on the surface of the graphite substrates more uniform and dense.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: October 9, 2018
    Assignee: SHENZHEN BRT NEW ENERGY MATERIALS INC.
    Inventors: Min Yue, Yan Liang, Huiqing Yan, Minghua Deng, Youyuan Huang
  • Publication number: 20180248191
    Abstract: An aqueous binder for a lithium ion battery, a preparation method and a use thereof. The binder is an inorganic-organic composite emulsion, comprising a dispersing agent, inorganic nanoparticles, (methyl)acrylate monomers, unsaturated carboxylic acid monomers, vinyl hydrocarbon monomers and optionally copolymers of other copolymerizable monomers, wherein the dispersing agent is a water-soluble cellulose grafted amphiphilic copolymer. When the water-soluble cellulose grafted amphiphilic copolymer is used as the dispersing agent, the agglomeration of the nanoparticles when the binder is formed into a film can be avoided, and at the same time, the effects of toughening and improving the binding strength can be achieved. Meanwhile, the water-soluble cellulose has certain strengthening and toughening properties so that the aqueous binder has an excellent anti-tensile performance. The aqueous binder for a lithium ion battery can be used for lithium ion batteries.
    Type: Application
    Filed: August 25, 2016
    Publication date: August 30, 2018
    Inventors: Jun LIU, Jianguo REN, Min YUE, Miaomiao LI
  • Publication number: 20180016624
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 18, 2018
    Inventors: Min YUE, David M. LIU, Joy ROY, Yuh-Min CHIANG, Joon Mo YANG, Dennis LEHTO, Charles S. VANN, Nigel P. BEARD, Ian A. HARDING, John R. Van Camp, Alexander DROMARETSKY, Sergey V. ERMAKOV, Mark F. OLDHAM, Maryam SHARIATI, Umberto ULMANELLA
  • Publication number: 20170297917
    Abstract: The present invention discloses an equipment and process for preparing silicon oxides, and relates to the field of chemical equipments. Said equipment comprises at least one tank having opening(s) at at least one end thereof and comprising a reaction unit and a collection unit, wherein the reaction unit is used for placing raw materials therein; and the collection unit is used for placing a collector therein which is placed at the opening end of the tank; and the reaction unit is placed away from the opening end of the tank and placed inside a heating furnace; the collection unit and opening(s) are both placed outside the heating furnace; the tank is vacuumized via a port; and a tank lid is used for opening or closing the opening(s) of the tank. The preparation process uses such equipment. The present invention solves the problems of great energy consumption and low efficiency caused by the fact that the previous equipment and process for preparing silicon oxides are unable to achieve continuous production.
    Type: Application
    Filed: July 8, 2015
    Publication date: October 19, 2017
    Inventors: Chunlei Pang, Jianguo Ren, Min Yue
  • Patent number: 9714444
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: July 25, 2017
    Assignee: APPLIED BIOSYSTEMS, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella
  • Publication number: 20170207457
    Abstract: A multiple-element composite material for negative electrodes, a preparation method therefor, and a lithium-ion battery using tile negative electrode material. The lithium-ion battery uses multiple-element composite material for negative electrodes has a core-shell structure containing multiple shell layers. The inner core consists of graphite and nano-active matter coating the surface of the graphite. The outer layers of the inner core are in order: the first shell layer is of an electrically conductive carbon material, the second shell layer is of a nano-active matter, and the third shell layer is an electrically conductive carbon material coating layer.
    Type: Application
    Filed: August 17, 2015
    Publication date: July 20, 2017
    Inventors: Min Yue, Peng He, Sheng Li, Jianguo Ren, Youyuan Huang
  • Patent number: 9440861
    Abstract: The present invention discloses a method for modification of a lithium ion battery positive electrode material. The method comprises the following steps: (1) mixing organic acid and alcohol to obtain an organic solution; (2) adding positive electrode material into the organic solution to obtain a suspension; (3) washing with alcohol solvent after centrifugal separation; (4) drying treatment; the positive electrode material is a nickel-based metal oxide positive electrode material LiNixM1-xO2, wherein 0.5?x<1 and M is one or two selected from the group consisting of Co, Mn, Al, Cr, Mg, Cu, Ti, Mg, Zn, Zr and V.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: September 13, 2016
    Assignee: Shenzhen BTR New Energy Materials Inc.
    Inventors: Min Yue, Shunyi Yang, Youyuan Huang, Jianguo Ren, Lin Cheng
  • Publication number: 20160211511
    Abstract: The present invention relates to a nano-silicon composite negative electrode material, including graphite matrix and nano-silicon material homogeneously deposited inside the graphite matrix, wherein the nano-silicon composite negative electrode material is prepared by using silicon source to chemical-vapor deposit nano-silicon particles inside hollowed graphite. The nano-silicon composite negative electrode material of the present invention has features of high specific capacity (higher than 1000 mAh/g), high initial charge-discharge efficiency (higher than 93%) and high conductivity. The preparation process of the present invention is easy to operate and control, and has low production cost and is suitable for industrial production.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 21, 2016
    Inventors: Jianguo REN, Min YUE, Youyuan HUANG, Xueqin HE
  • Publication number: 20160025630
    Abstract: The invention provides optical instrument systems and methods for analyzing signals from biological arrays, and performing analytical amplification reactions for identifying the presence or absence of a target nucleic acid sequence in a sample to be analyzed.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 28, 2016
    Inventors: Morten Jensen, Nimisha Srivastava, Min Yue, Aashish Priye, Robert Nagle
  • Publication number: 20150099174
    Abstract: The present invention relates to a silicon monoxide composite negative electrode material, which comprises silicon monoxide substrate. Nano-Silicon material uniformly deposited on the silicon monoxide substrate and nanoscale conductive material coating layer on the surface of the silicon monoxide/Nano-Silicon. The preparation method of the silicon monoxide composite negative electrode material includes Nano-Silicon chemistry vapour deposition, nanoscale conductive material coating modification, screening and demagnetizing. The silicon monoxide composite negative electrode material has properties of high specific capacity (>1600 mAh/g), high charge-discharge efficiency of the first cycle (>80%) and high conductivity.
    Type: Application
    Filed: May 6, 2014
    Publication date: April 9, 2015
    Applicant: Shenzhen BTR New Energy Materials Inc.
    Inventors: Jianguo Ren, Dexin Yu, Min Yue
  • Patent number: 8993170
    Abstract: A composite carbon material of negative electrode in lithium ion, which is made of composite graphite, includes a spherical graphite and a cover layer, wherein the cover layer is pyrolytic carbon of organic substance. Inserted transition metal elements are contained between layers of graphite crystal. Preparation of the negative electrode includes the steps of: crushing graphite, shaping to form a spherical shape, purifying treatment, washing, dewatering and drying, dipped in salt solution doped by transition metal in multivalence, mixed with organic matter, covering treatment, and carbonizing treatment or graphitization treatment. The negative electrode provides advantages of reversible specific capacity larger than 350 mAh/g, coulomb efficiency higher than 94% at first cycle, conservation rate for capacity larger than 8-% in 500 times of circulation.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: March 31, 2015
    Assignee: BTR New Energy Materials Inc.
    Inventors: Min Yue, Wanhong Zhang
  • Publication number: 20140339464
    Abstract: The present invention discloses a method for modification of a lithium ion battery positive electrode material. The method comprises the following steps: (1) mixing organic acid and alcohol to obtain an organic solution; (2) adding positive electrode material into the organic solution to obtain a suspension; (3) washing with alcohol solvent after centrifugal separation; (4) drying treatment; the positive electrode material is a nickel-based metal oxide positive electrode material LiNixM1?xO2, wherein 0.5?x<1 and M is one or two selected from the group consisting of Co, Mn, Al, Cr, Mg, Cu, Ti, Mg, Zn, Zr and V.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: SHENZHEN BTR NEW ENERGY MATERIALS INC.
    Inventors: Min Yue, Shunyi Yang, Youyuan Huang, Jianguo REN, Lin Cheng
  • Publication number: 20140302394
    Abstract: A lithium ion battery graphite negative electrode material and preparation method thereof. The lithium ion battery graphite negative electrode material is a composite material including graphite substrates, surface coating layers coated on the graphite substrates and carbon nanotubes and/or carbon nanofibers grown in situ on the surface of the surface coating layers. The preparation method thereof includes, in solid phase or liquid phase circumstance, the coated carbon material precursor forms the surface coating layer of amorphous carbon by carbonization, and then carbon nanotubes and/or carbon nanofibers having high conductive performance are formed on the surface of the surface coating layers by vapor deposition. This coating mode of the combination of solid phase with gas phase or of liquid phase and gas phase makes the amorphous carbon formed on the surface of the graphite substrates more uniform and dense.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 9, 2014
    Applicant: SHENZHEN BTR NEW ENERGY MATERIALS INC
    Inventors: Min Yue, Yan Liang, Huiqing Yan, Minghua Deng, Youyuan Huang
  • Publication number: 20140162264
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 12, 2014
    Applicant: APPLIED BIOSYSTEMS, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella