Patents by Inventor Mina A. Rezk
Mina A. Rezk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11680794Abstract: Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.Type: GrantFiled: September 14, 2018Date of Patent: June 20, 2023Assignee: Nikon Metrology NVInventors: Anthony R. Slotwinski, Mina A. Rezk
-
Patent number: 11226414Abstract: A light ranging and detection (LiDAR) device may combine the transmission of laser pulses. Different trains of pulses from different transmitters may be combined and transmitted to an environment via a common optical path. The laser pulses transmitted from one train of pulses may be in a polarization state that is orthogonal to a polarization state for the laser pulses of the other train of pulses. Reflections for the different trains of pulses may be received via the common optical path and separated according to polarization state. Reflections of the train of pulses may be directed to one receiver and reflections of the other train of pulses may be directed to a different receiver. The transmission delta between the different trains of pulses may be dynamically configured. The pulse repetition rate of each train of pulses may also be configured.Type: GrantFiled: January 24, 2020Date of Patent: January 18, 2022Assignee: Apple Inc.Inventors: Mina A. Rezk, Jean-Marie Bussat
-
Patent number: 10989879Abstract: An optical delay between a first fiber and a second fiber is temperature compensated by combining fibers with different thermal path length changes. In some examples, fibers with different buffer coatings exhibit different path length changes per unit length and temperature. Combining such fibers in a fiber array provides a path length difference that is substantially independent of temperature.Type: GrantFiled: June 2, 2015Date of Patent: April 27, 2021Assignee: Nikon Metrology NVInventors: Anthony R. Slotwinski, Mina A. Rezk, Pavel Slyusarev
-
Patent number: 10795001Abstract: An electro-optical device includes a laser light source, which is configured to emit at least one beam of light. A beam steering device is configured to transmit and scan the at least one beam across a target scene. In an array of sensing elements, each sensing element is configured to output a signal indicative of incidence of photons on the sensing element. Light collection optics are configured to image the target scene scanned by the transmitted beam onto the array, wherein the beam steering device scans the at least one beam across the target scene with a spot size and scan resolution that are smaller than a pitch of the sensing elements. Circuitry is coupled to actuate the sensing elements only in a selected region of the array and to sweep the selected region over the array in synchronization with scanning of the at least one beam.Type: GrantFiled: December 15, 2019Date of Patent: October 6, 2020Assignee: APPLE INC.Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A. Rezk, Thierry Oggier
-
Patent number: 10775508Abstract: A compact remote sensing device is described that includes a transmit component that scans a beam of light across a scene or object field, and a receive component that receives return light from the object field. The transmit component includes a small, fast scanning mechanism such as a MEMS mirror or a piezo mirror that scans a beam of light emitted by a light source across a field of view (FOV). The receive component includes a focal plane array (FPA) with a FOV at least large enough to capture the FOV of the scanning mechanism. The FPA may be a low resolution FPA (i.e., with fewer pixels than the resolution of the scanning mechanism), and the light beam may be scanned and captured at multiple spots within the pixels of the FPA.Type: GrantFiled: August 17, 2017Date of Patent: September 15, 2020Assignee: Apple Inc.Inventors: Mina A. Rezk, Alexander Shpunt
-
Patent number: 10775507Abstract: An electro-optical device includes a laser, which is configured to emit toward a scene pulses of optical radiation. An array of detectors are configured to receive the optical radiation that is reflected from points in the scene and to output signals indicative of respective times of arrival of the received radiation. A controller is coupled to drive the laser to emit a sequence of pulses of the optical radiation toward each of a plurality of points in the scene and to find respective times of flight for the points responsively to the output signals, while controlling a power of the pulses emitted by the laser by counting a number of the detectors outputting the signals in response to each pulse, and reducing the power of a subsequent pulse in the sequence when the number is greater than a predefined threshold.Type: GrantFiled: August 10, 2017Date of Patent: September 15, 2020Assignee: APPLE INC.Inventors: Shingo Mandai, Cristiano L Niclass, Richard E Bills, Moshe Laifenfeld, Mina A. Rezk, Alexander Shpunt, Ron Sokolovsky, Tal Kaitz, Ronen Akerman, Jason D. Mudge, Andrew J Sutton
-
Publication number: 20200158871Abstract: A light ranging and detection (LiDAR) device may combine the transmission of laser pulses. Different trains of pulses from different transmitters may be combined and transmitted to an environment via a common optical path. The laser pulses transmitted from one train of pulses may be in a polarization state that is orthogonal to a polarization state for the laser pulses of the other train of pulses. Reflections for the different trains of pulses may be received via the common optical path and separated according to polarization state. Reflections of the train of pulses may be directed to one receiver and reflections of the other train of pulses may be directed to a different receiver. The transmission delta between the different trains of pulses may be dynamically configured. The pulse repetition rate of each train of pulses may also be configured.Type: ApplicationFiled: January 24, 2020Publication date: May 21, 2020Applicant: Apple Inc.Inventors: Mina A. Rezk, Jean-Marie Bussat
-
Publication number: 20200158831Abstract: An electro-optical device includes a laser light source, which is configured to emit at least one beam of light. A beam steering device is configured to transmit and scan the at least one beam across a target scene. In an array of sensing elements, each sensing element is configured to output a signal indicative of incidence of photons on the sensing element. Light collection optics are configured to image the target scene scanned by the transmitted beam onto the array, wherein the beam steering device scans the at least one beam across the target scene with a spot size and scan resolution that are smaller than a pitch of the sensing elements. Circuitry is coupled to actuate the sensing elements only in a selected region of the array and to sweep the selected region over the array in synchronization with scanning of the at least one beam.Type: ApplicationFiled: December 15, 2019Publication date: May 21, 2020Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A. Rezk, Thierry Oggier
-
Patent number: 10634770Abstract: Optical systems that may, for example, be used in remote sensing systems, for example in systems that implement combining laser pulse transmission in LiDAR and that include dual transmit and receive systems. A dual receiver system may include a receiver including an optical system with a relatively small aperture and wide field of view for capturing reflected light from short-range (e.g., <20 meters) objects, and a receiver that includes an optical system with a relatively large aperture and small field of view for capturing reflected light from long-range (e.g., >20 meters) objects. The optical systems may refract the reflected light to photodetectors (e.g., single photo-avalanche detectors (SPADs)) that capture the light. Light captured at the photodetectors may, for example, be used to determine range information for objects or surfaces in the environment.Type: GrantFiled: June 28, 2017Date of Patent: April 28, 2020Assignee: Apple Inc.Inventors: Chandra S. Kakani, Alexander Shpunt, Mina A. Rezk, Robert S. Upton, Yuval Gerson
-
Patent number: 10545238Abstract: A light ranging and detection (LiDAR) device may combine the transmission of laser pulses. Different trains of pulses from different transmitters may be combined and transmitted to an environment via a common optical path. The laser pulses transmitted from one train of pulses may be in a polarization state that is orthogonal to a polarization state for the laser pulses of the other train of pulses. Reflections for the different trains of pulses may be received via the common optical path and separated according to polarization state. Reflections of the train of pulses may be directed to one receiver and reflections of the other train of pulses may be directed to a different receiver. The transmission delta between the different trains of pulses may be dynamically configured. The pulse repetition rate of each train of pulses may also be configured.Type: GrantFiled: September 23, 2016Date of Patent: January 28, 2020Assignee: Apple Inc.Inventors: Mina A. Rezk, Jean-Marie Bussat
-
Patent number: 10324171Abstract: An electro-optical device includes a laser light source, which emits at least one beam of light pulses, a beam steering device, which transmits and scans the at least one beam across a target scene, and an array of sensing elements. Each sensing element outputs a signal indicative of a time of incidence of a single photon on the sensing element. Light collection optics image the target scene scanned by the transmitted beam onto the array. Circuitry is coupled to actuate the sensing elements only in a selected region of the array and to sweep the selected region over the array in synchronization with scanning of the at least one beam.Type: GrantFiled: December 8, 2016Date of Patent: June 18, 2019Assignee: APPLE INC.Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A Rezk, Thierry Oggier
-
Patent number: 10305247Abstract: An optical apparatus includes an array of lasers, which are arranged in a grid pattern having a predefined spatial pitch and are configured to emit respective beams of pulses of optical radiation. Projection optics having a selected focal length project the beams toward a target with an angular pitch between the beams defined by the spatial pitch and the focal length. A scanner scans the projected beams over a range of scan angles that is less than twice the angular pitch. Control circuitry drives the lasers and the scanner so that the pulses cover the target with a resolution finer than the angular pitch. A receiver receives and measures a time of flight of the pulses reflected from the target.Type: GrantFiled: August 30, 2016Date of Patent: May 28, 2019Assignee: APPLE INC.Inventors: Richard E. Bills, Andrew J. Sutton, Cristiano L. Niclass, Mina A. Rezk
-
Publication number: 20190025053Abstract: Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.Type: ApplicationFiled: September 14, 2018Publication date: January 24, 2019Applicant: Nikon Metrology NVInventors: Anthony R. Slotwinski, Mina A. Rezk
-
Patent number: 10180496Abstract: Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.Type: GrantFiled: March 15, 2013Date of Patent: January 15, 2019Assignees: Nikon Corporation, Nikon Metrology NVInventors: Daniel G. Smith, Eric Peter Goodwin, Anthony R. Slotwinski, Mina A. Rezk, Alexander Cooper, Thomas M. Hedges
-
Publication number: 20180341009Abstract: An electro-optical device includes at least one laser light source and a beam steering device, which transmits and scan the at least one beam across a target scene. One or more sensing elements output a signal indicative of a time of incidence of a single photon on the sensing element from the target scene. Circuitry processes the signal in order to determine respective distances to points in the scene and controls the light source to emit the beam at the low level during a first scan, to identify, based on the first scan, the points in the scene that are located at respective distances from the device that are greater than a predefined threshold distance, and to control the laser light source during a second scan to emit the beam at the high level while the beam steering device directs the beam toward the identified points.Type: ApplicationFiled: May 4, 2017Publication date: November 29, 2018Inventors: Cristiano L. Niclass, Alexander Shpunt, Gennadiy A. Agranov, Matthew C. Waldon, Mina A. Rezk, Thierry Oggier
-
Patent number: 10139492Abstract: Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.Type: GrantFiled: February 27, 2017Date of Patent: November 27, 2018Assignee: Nikon CorporationInventors: Mina A. Rezk, Anthony R. Slotwinski, Daniel G. Smith, Eric Peter Goodwin, Alexander Cooper, Thomas M. Hedges
-
Patent number: 10119816Abstract: Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.Type: GrantFiled: March 15, 2013Date of Patent: November 6, 2018Assignee: Nikon Metrology NVInventors: Anthony R. Slotwinski, Mina A. Rezk
-
Publication number: 20180081061Abstract: An electro-optical device includes a laser, which is configured to emit toward a scene pulses of optical radiation. An array of detectors are configured to receive the optical radiation that is reflected from points in the scene and to output signals indicative of respective times of arrival of the received radiation. A controller is coupled to drive the laser to emit a sequence of pulses of the optical radiation toward each of a plurality of points in the scene and to find respective times of flight for the points responsively to the output signals, while controlling a power of the pulses emitted by the laser by counting a number of the detectors outputting the signals in response to each pulse, and reducing the power of a subsequent pulse in the sequence when the number is greater than a predefined threshold.Type: ApplicationFiled: August 10, 2017Publication date: March 22, 2018Inventors: Shingo Mandai, Cristiano L. Niclass, Richard E. Bills, Moshe Laifenfeld, Mina A. Rezk, Alexander Shpunt, Ron Sokolovsky, Tal Kaitz, Ronen Akerman, Jason D. Mudge, Andrew J. Sutton
-
Publication number: 20180062345Abstract: An optical apparatus includes an array of lasers, which are arranged in a grid pattern having a predefined spatial pitch and are configured to emit respective beams of pulses of optical radiation. Projection optics having a selected focal length project the beams toward a target with an angular pitch between the beams defined by the spatial pitch and the focal length. A scanner scans the projected beams over a range of scan angles that is less than twice the angular pitch. Control circuitry drives the lasers and the scanner so that the pulses cover the target with a resolution finer than the angular pitch. A receiver receives and measures a time of flight of the pulses reflected from the target.Type: ApplicationFiled: August 30, 2016Publication date: March 1, 2018Inventors: Richard E. Bills, Andrew J. Sutton, Cristiano L. Niclass, Mina A. Rezk
-
Publication number: 20180003803Abstract: Optical systems that may, for example, be used in remote sensing systems, for example in systems that implement combining laser pulse transmission in LiDAR and that include dual transmit and receive systems. A dual receiver system may include a receiver including an optical system with a relatively small aperture and wide field of view for capturing reflected light from short-range (e.g., <20 meters) objects, and a receiver that includes an optical system with a relatively large aperture and small field of view for capturing reflected light from long-range (e.g., >20 meters) objects. The optical systems may refract the reflected light to photodetectors (e.g., single photo-avalanche detectors (SPADs)) that capture the light. Light captured at the photodetectors may, for example, be used to determine range information for objects or surfaces in the environment.Type: ApplicationFiled: June 28, 2017Publication date: January 4, 2018Applicant: Apple Inc.Inventors: Chandra S. Kakani, Alexander Shpunt, Mina A. Rezk, Robert S. Upton, Yuval Gerson