Patents by Inventor Mina Rezk

Mina Rezk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965983
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes an optical source to emit an optical beam towards a target and a mode field expander operatively coupled to the optical source to expand a mode area of the optical beam from a first mode of a single mode optical fiber to a second mode of a larger mode area optical fiber.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: April 23, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Keith Gagne, Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Mina Rezk
  • Patent number: 11960032
    Abstract: A light detection and ranging (LIDAR) system includes an optical source to emit a corresponding plurality of optical beams with synchronized chirp rates and synchronized chirp durations. The plurality of optical beams are each tuned to produce regions of constructive and destructive interference into a combined optical beam. A first optical component forms a phase-locked loop to correct nonlinearities detected in the plurality of optical beams. A second optical component transmits a combined optical beam toward a target environment and receives a target return signal. A third optical component downconverts the target return signal to a plurality of fixed frequency downconverted target return signals, each including a target range component and a target velocity component.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: April 16, 2024
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Neal N. Oza, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Publication number: 20240118428
    Abstract: A light detection and ranging (LIDAR) system, includes a memory, and a processor, operatively coupled to the memory, to identify an obstruction of the LIDAR system based on a comparison of a frequency of an energy peak generated from a return signal to a threshold frequency and mitigate the obstruction.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11940571
    Abstract: A method of operating a light detection and ranging (LIDAR) system is provided that includes generating a beam of polarized light; and transforming a polarization state of the beam of polarized light at a rate faster than a rate of data collection at a plurality of detectors configured to detect light reflected from a target for the purpose of speckle-reduction.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: March 26, 2024
    Assignee: Aeva, Inc.
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11927699
    Abstract: A light detection and ranging (LIDAR) system includes optical sources to emit a continuous-wave (CW) optical beam and a frequency-modulated CW (FMCW) optical beam, a first and second optical coupler to generate a CW local oscillator (LO), and an FMCW LO signal. The system further includes a first optical component to combine the CW optical beam and the FMCW optical beam, a second optical component to transmit the combined optical beam toward a target, a third optical component to split a target return signal into a CW return signal and a FMCW return signal based on polarization or frequency, a first optical detector to detect a first beat frequency from a combination of the CW LO signal and the CW return signal, and a second optical detector to detect a second beat frequency from a combination of the FMCW LO and the FMCW return signal.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: March 12, 2024
    Assignee: Aeva, Inc.
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Patent number: 11927693
    Abstract: A first signal is sampled at the LiDAR system to produce a first set of samples around a first detected frequency peak related to the first signal. A second signal is sampled at the LiDAR system to produce a second set of samples around a second detected frequency peak related to the second signal. A first function based on the first set of samples and a second function based on the second set of samples are convolved to produce a third function. At least one of the first signal or the second signal is refined to produce at least one of a first refined signal or a second refined signal based on the third function. Range and velocity information is extracted related to a target based on the at least one of the first refined signal or the second refined signal.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: March 12, 2024
    Assignee: Aeva, Inc.
    Inventors: Jose Krause Perin, Mina Rezk, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti
  • Publication number: 20240077614
    Abstract: A method of operating a light detection and ranging (LiDAR) system is provided that includes performing a scene measurement using a LiDAR sensor capable of measuring Doppler per point. The method also includes estimating a velocity of the LiDAR sensor with respect to static points within the scene based on the scene measurement. The method may also include compensating for the velocity of the LiDAR sensor and compensating for a Doppler velocity of the LiDAR sensor.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 7, 2024
    Inventors: Bruno Hexsel, Mina Rezk
  • Publication number: 20240077611
    Abstract: A light detection and ranging (LIDAR) system is provided that includes a first optical source and a second optical source configured to emit respectively a first optical beam and a second optical beam that are nondegenerate and are chirped antiphase, lensing optics to direct the first and second optical beams toward a target, and collect a first return signal and a second return signal, and a first optical detector and a second optical detector configured to generate a first signal from the first return signal mixed with a first local oscillator and a second signal from the second return signal mixed with the second local oscillator.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Inventors: Mina Rezk, Neal Oza
  • Publication number: 20240077612
    Abstract: A light detection and ranging (LIDAR) system is provided that transmits optical beams and detects return optical beams. The optical beams are frequency modulated with sweeps of a frequency band to produce chirps, each sweep being divisible into multiple sub-sweeps. Multiple simultaneous measurements of first and second beat frequencies are made per sweep produce chirps from the transmitted optical beams and the return optical beams. A signal processor is configured to determine a range and velocity of a target from the multiple simultaneous measurements. At least one of the sweeps is used to produce a custom simultaneous measurement of the beat frequencies for a custom sub-sweep. A custom sub-sweep value of range and velocity is determined from the custom simultaneous measurement, there being at least the sweep value and the custom sub-sweep value of range and velocity for the at least one of the multiple sweeps.
    Type: Application
    Filed: April 27, 2023
    Publication date: March 7, 2024
    Inventors: Mina Rezk, Neeraj Tayal
  • Patent number: 11921214
    Abstract: A method transmits a first optical beam towards targets within a field of view (FOV). The first optical beam is modulated at a first chirp rate for a first set of scan lines that correspond to a first distance of the targets. The method identifies conditions based on the FOV to calculate a second chirp rate, and generates a scan pattern by transmitting a second optical beam towards the targets within the FOV. The second optical beam is modulated at the second chirp rate for a second set of scan lines that corresponds to a second distance of the one or more targets. The method generates, based on the first and second optical beams, the point cloud that includes multiple data points related to the target in which some of the data points are related to a first target and other data points are related to a second target.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: March 5, 2024
    Assignee: Aeva, Inc.
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Mina Rezk, James Reuther, James Nakamura, Kshitij Jain
  • Patent number: 11914038
    Abstract: An electro-optical system has a laser drive electronic circuit, a laser light source and an optical interferometer, forming a closed loop. The laser drive electronic circuit is arranged to receive a reference frequency as input, and a beat frequency as feedback. The laser drive electronic circuit generates a drive output based on a phase difference between the reference frequency and the beat frequency. The optical interferometer, coupled to the laser light, generates optical energy at the beat frequency.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: February 27, 2024
    Assignee: Aeva, Inc.
    Inventors: Bryce Bradford, Mina Rezk
  • Patent number: 11899111
    Abstract: A light detection and ranging (LIDAR) system to transmit an optical beam toward a target and receive a returned optical beam. The optical beam includes an up-chirp frequency and a down-chirp frequency, and is modulated to have phase non-linearities. The LIDAR system generates a baseband signal from the returned optical beam, which includes a plurality of peaks corresponding with the up-chirp frequency and the down-chirp frequency. The LIDAR system identifies a first true peak in the baseband signal, and identifies a second true peak in the baseband signal based, at least in part, on a spectral shape of the second true peak caused by the phase non-linearities. The LIDAR system is to determine the location of the target using the first true peak and the second true peak.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: February 13, 2024
    Assignee: Aeva, Inc.
    Inventors: Esha John, Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20240045066
    Abstract: A method transmits a first optical beam towards targets within a field of view (FOV). The first optical beam is modulated at a first chirp rate for a first set of scan lines that correspond to a first distance of the targets. The method identifies conditions based on the FOV to calculate a second chirp rate, and generates a scan pattern by transmitting a second optical beam towards the targets within the FOV. The second optical beam is modulated at the second chirp rate for a second set of scan lines that corresponds to a second distance of the one or more targets. The method generates, based on the first and second optical beams, the point cloud that includes multiple data points related to the target in which some of the data points are related to a first target and other data points are related to a second target.
    Type: Application
    Filed: January 31, 2023
    Publication date: February 8, 2024
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Mina Rezk, James Reuther, James Nakamura, Kshitij Jain
  • Publication number: 20240019553
    Abstract: A light detection and ranging (LIDAR) apparatus including free space optics to combine a target signal and a local oscillator signal to generate a combined signal. The LIDAR system also includes a set of multi-mode (MM) waveguides and a demultiplexer including a dispersive element. The demultiplexer configured to disperse, via the dispersive element, each respective wavelength of the combined signal at a corresponding angle, and reflect each respective wavelength of the combined signal to a corresponding MM waveguide of the set of MM waveguides.
    Type: Application
    Filed: August 3, 2023
    Publication date: January 18, 2024
    Inventors: Behsan Behzadi, Omer P. Kocaoglu, Keith Gagne, Oguzhan Avci, Neal N. Oza, Mina Rezk
  • Patent number: 11860282
    Abstract: A light detection and ranging (LIDAR) system, includes an optical source to generate a frequency modulated continuous wave (FMCW) optical beam, a memory, and a processor, operatively coupled to the memory, to identify energy peaks in a frequency domain of a range-dependent baseband signal that corresponds to a return signal from a reflection of the FMCW optical beam and identify an obstruction of the LIDAR system based on a comparison of a frequency of the energy peaks to a threshold frequency.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: January 2, 2024
    Assignee: Aeva, Inc.
    Inventors: Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Publication number: 20230417882
    Abstract: A method of operating a frequency-modulated continuous wave (FMCW) light detection and ranging (LIDAR) system is provided. The method includes transmitting a beam of co-propagating, cross-polarized light to a target. The method includes receiving return light reflected from the target by at least one detector. The method further includes transforming a polarization state of the beam at a transformation rate faster than a data collection rate from the at least one detector.
    Type: Application
    Filed: September 13, 2023
    Publication date: December 28, 2023
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Publication number: 20230408655
    Abstract: A LiDAR system includes an optical subsystem with an optical axis. The optical subsystem includes an optical source to emit an optical beam, a first optical lens to transmit the optical beam, an optical window to reflect a first portion of the optical beam to generate a LO signal, an optical scanner to transmit a second portion of the optical beam to a target to scan the target to generate a target return signal, where the LO signal is disposed to be decentered from the optical axis on a second optical lens in front of a photodetector (PD) to increase a percentage of an overlap of the LO signal and the target return signal on the PD.
    Type: Application
    Filed: December 7, 2022
    Publication date: December 21, 2023
    Inventors: Keith Gagne, Adrian Cort, Oguzhan Avci, Kevin Pollock, Pierre Hicks, Mina Rezk, Behsan Behzadi, Gautam Prabhakar
  • Patent number: 11841430
    Abstract: A light detection and ranging (LIDAR) system is provided that includes a first optical source and a second optical source configured to emit respectively a first optical beam and a second optical beam that are nondegenerate and are chirped antiphase and at least one tap configured to split each of the first optical beam and the second optical beam to generate a first local oscillator and a second local oscillator.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: December 12, 2023
    Assignee: Aeva, Inc.
    Inventors: Mina Rezk, Neal Oza
  • Patent number: 11828848
    Abstract: A method of operating a light detection and ranging (LiDAR) system is provided that includes performing a scene measurement using a LiDAR sensor capable of measuring Doppler per point. The method also includes estimating a velocity of the LiDAR sensor with respect to static points within the scene based on the scene measurement. The method may also include compensating for the velocity of the LiDAR sensor and compensating for a Doppler velocity of the LiDAR sensor.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 28, 2023
    Assignee: Aeva, Inc.
    Inventors: Bruno Hexsel, Mina Rezk
  • Patent number: 11796652
    Abstract: A frequency modulated continuous wave (FMCW) light detection and ranging (LIDAR) system includes a processor and a memory. The memory stores instructions that, when executed by the processor, cause the system to: receive samples of a range-dependent time domain baseband signal; assemble the samples into sample blocks in the time domain; convert the sample blocks from the time domain to the frequency domain; generate subbands in the frequency domain from converted sample blocks; classify the subbands into a plurality of subband types based on subband typing criteria; select subband processing parameters for each of the subbands based on respective ones of the plurality of subband types; and process each of the subbands using the selected subband processing parameters for the subband.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: October 24, 2023
    Assignee: Aeva, Inc.
    Inventors: Kumar Bhargav Viswanatha, Jose Krause Perin, Rajendra Tushar Moorti, Mina Rezk