Patents by Inventor Minekazu Momiyama

Minekazu Momiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8997919
    Abstract: A motor-driven steering controller for controlling a steering wheel of a vehicle. The controller includes a steering torque controlling unit, a braking force estimating unit, a right and left braking force difference estimating unit and an assist steering torque providing unit. The steering torque controlling unit controls a steering torque on the steering wheel depending on a steering operation. The braking force estimating unit estimates braking forces to be imposed on wheels of the vehicle. The right and left braking force difference estimating unit estimates difference between the braking forces to be imposed on the right and left wheels each estimated by the braking forces estimating unit. The assist steering torque providing unit provides an assist steering torque for the steering torque controlling unit on the basis of the difference in braking force between right and left wheels estimated by the right and left braking force difference estimating unit.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 7, 2015
    Assignees: Aisin Seiki Kabushiki Kaisha, Jtekt Corporation, Advics Co., Ltd.
    Inventors: Yoshiyuki Yasui, Wataru Tanaka, Yuji Muragishi, Eiichi Ono, Katsuhiro Asano, Minekazu Momiyama, Hiroaki Kato, Kenji Asano
  • Publication number: 20100161180
    Abstract: A motor-driven steering controller for controlling a steering wheel of a vehicle. The controller includes a steering torque controlling unit, a braking force estimating unit, a right and left braking force difference estimating unit and an assist steering torque providing unit. The steering torque controlling unit controls a steering torque on the steering wheel depending on a steering operation. The braking force estimating unit estimates braking forces to be imposed on wheels of the vehicle. The right and left braking force difference estimating unit estimates difference between the braking forces to be imposed on the right and left wheels each estimated by the braking forces estimating unit. The assist steering torque providing unit provides an assist steering torque for the steering torque controlling unit on the basis of the difference in braking force between right and left wheels estimated by the right and left braking force difference estimating unit.
    Type: Application
    Filed: March 5, 2010
    Publication date: June 24, 2010
    Applicants: AISIN SEIKI KABUSHIKI KAISHA, JTEKT CORPORATION, ADVICS CO., LTD.
    Inventors: Yoshiyuki Yasui, Wataru Tanaka, Yuji Muragishi, Eiichi Ono, Katsuhiro Asano, Minekazu Momiyama, Hiroaki Kato, Kenji Asano
  • Patent number: 7699137
    Abstract: A motor-driven steering controller for controlling a steering wheel of a vehicle. The controller includes a steering torque controlling unit, a braking force estimating unit, a right and left braking force difference estimating unit and an assist steering torque providing unit. The steering torque controlling unit controls a steering torque on the steering wheel depending on a steering operation. The braking force estimating unit estimates braking forces to be imposed on wheels of the vehicle. The right and left braking force difference estimating unit estimates difference between the braking forces to be imposed on the right and left wheels each estimated by the braking forces estimating unit. The assist steering torque providing unit provides an assist steering torque for the steering torque controlling unit on the basis of the difference in braking force between right and left wheels estimated by the right and left braking force difference estimating unit.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: April 20, 2010
    Assignees: Aisin Seiki Kabushiki Kaisha, Jtekt Corporation, Advics Co., Ltd.
    Inventors: Yoshiyuki Yasui, Wataru Tanaka, Yuji Muragishi, Eiichi Ono, Katsuhiro Asano, Minekazu Momiyama, Hiroaki Kato, Kenji Asano
  • Patent number: 7441627
    Abstract: The control system of a vehicle controls the transmission ratio of the steering angle of a steering wheel relative to a turning angle of front wheels based on a drive force distribution ratio. Thus, the performance of the tires on the front wheels can be used to almost maximum potential, providing effective prevention of understeering.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: October 28, 2008
    Assignee: Jtekt Corporation
    Inventors: Takayuki Ohta, Shinji Takeuchi, Minekazu Momiyama, Hiroaki Kato, Tsuyoshi Murakami
  • Patent number: 7398145
    Abstract: A grip factor estimating apparatus includes a steering torque detecting unit M1, and an assist torque detecting unit M2. When a self-aligning torque estimating unit M6 estimates self-aligning torque generated in front wheels on the basis of detection result of the detecting unit, the quantity of influence of longitudinal force on self-aligning torque is removed on the basis of longitudinal force acting on the front wheels and estimated by a longitudinal force estimating unit M15 and a front wheel slip angle estimated by a front wheel slip angle estimating unit M9y. A grip factor estimating unit M12 estimates the grip factor of the front wheels on the basis of change in self-aligning torque in accordance with the side force.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: July 8, 2008
    Assignees: Jtekt Corporation, Advics Co., Ltd.
    Inventors: Hiroaki Kato, Minekazu Momiyama, Yoshiyuki Yasui, Yuji Muragishi, Yuzo Imoto, Hiroaki Aizawa
  • Patent number: 7374014
    Abstract: A motor-driven steering controller for controlling a steering wheel of a vehicle. The controller includes a steering torque controlling unit, a braking force estimating unit, a right and left braking force difference estimating unit and an assist steering torque providing unit. The steering torque controlling unit controls a steering torque on the steering wheel depending on a steering operation. The braking force estimating unit estimates braking forces to be imposed on wheels of the vehicle. The right and left braking force difference estimating unit estimates difference between the braking forces to be imposed on the right and left wheels each estimated by the braking forces estimating unit. The assist steering torque providing unit provides an assist steering torque for the steering torque controlling unit on the basis of the difference in braking force between right and left wheels estimated by the right and left braking force difference estimating unit.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: May 20, 2008
    Assignees: Aisin Seiki Kabushiki Kaisha, Jtekt Corporation, Advics Co., Ltd.
    Inventors: Yoshiyuki Yasui, Wataru Tanaka, Yuji Muragishi, Eiichi Ono, Katsuhiro Asano, Minekazu Momiyama, Hiroaki Kato, Kenji Asano
  • Patent number: 7337873
    Abstract: A steering control apparatus is provided for controlling a steered wheel angle of a wheel to be steered. On the basis of a road coefficient of friction estimated between right and left wheels, a braking force difference between the right and left wheels is calculated. A slip angle—total lateral force characteristic indicative of a relationship between a slip angle and a total lateral force of a wheel to be steered is provided on the basis of the estimated coefficient of friction. Then, a steered wheel angle of the wheel to be steered is set on the basis of the braking force difference and the slip angle—total lateral force characteristic.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: March 4, 2008
    Assignees: Advics Co., Ltd., Toyoda Koki Kabushiki Kaisha
    Inventors: Hiroaki Aizawa, Hiroaki Niino, Minekazu Momiyama, Hiroaki Kato
  • Patent number: 7315773
    Abstract: This invention provides a vehicle motion control method and a vehicle motion control apparatus capable of improving the behavior stability of a vehicle. According to the vehicle motion control method, vehicle steering characteristic is determined based on a behavior amount differentiated value obtained by differentiating (S203) a slip angle differential value which is a behavior amount of the vehicle which occurs around a z-axis in the vertical direction with respect to the vehicle body (S205, S209). Consequently, because the phase of the slip angle differential value is progressed, the transition tendency of the steering characteristic, that is, which the vehicle motion condition is moved to over-steer or under-steer, can be obtained early. Therefore, the starting timing of the steering control or drive power control of the vehicle can be accelerated thereby improving the behavior stability of the vehicle.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: January 1, 2008
    Assignee: JTEKT Corporation
    Inventors: Hiroaki Kato, Minekazu Momiyama, Takayuki Ohta
  • Publication number: 20070294011
    Abstract: A motor-driven steering controller for controlling a steering wheel of a vehicle. The controller includes a steering torque controlling unit, a braking force estimating unit, a right and left braking force difference estimating unit and an assist steering torque providing unit. The steering torque controlling unit controls a steering torque on the steering wheel depending on a steering operation. The braking force estimating unit estimates braking forces to be imposed on wheels of the vehicle. The right and left braking force difference estimating unit estimates difference between the braking forces to be imposed on the right and left wheels each estimated by the braking forces estimating unit. The assist steering torque providing unit provides an assist steering torque for the steering torque controlling unit on the basis of the difference in braking force between right and left wheels estimated by the right and left braking force difference estimating unit.
    Type: Application
    Filed: August 16, 2007
    Publication date: December 20, 2007
    Inventors: Yoshiyuki Yasui, Wataru Tanaka, Yuji Muragishi, Eiichi Ono, Katsuhiro Asano, Minekazu Momiyama, Hiroaki Kato, Kenji Asano
  • Patent number: 7302328
    Abstract: A steering control apparatus obtains a steered amount by which a steered wheel is steered based on a left-and-right braking force difference control amount, a vehicle state control amount, and a steering control amount. The apparatus changes the magnitude of the braking force difference control amount and the magnitude of the vehicle state control amount according to a vehicle speed or to time elapsed from when braking started to be applied to the left and right wheels. Accordingly, the vehicle driving on a ?-split road is prevented from being deflected toward a side of higher friction coefficient due to the left-and-right braking force difference when the braking is applied.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: November 27, 2007
    Assignees: JTEKT Corporation, Advics Co., Ltd.
    Inventors: Hiroaki Kato, Minekazu Momiyama, Yoshiyuki Yasui, Hiroaki Aizawa, Hiroaki Niino
  • Patent number: 7260458
    Abstract: In a steering apparatus, in accordance with a grip limit control process (30b?), it is determined whether or not a grip degree ? estimated by a grip degree estimation arithmetically operating process (30a) is less than a predetermined grip degree (??), and in the case that it is determined that an estimated grip degree (?) is less than the predetermined grip degree (??), the process applies such a feeling that a steering operation by a steering wheel suddenly becomes light to a driver, by suddenly increasing an assist quantity by a motor (M), thereby notifying the driver of the matter that the grip degree of a steered wheel is close to a limit. Therefore, it is possible to transmit to the driver a probability that a side slip is generated by further turning the steering wheel 21 in the same direction as the current direction, thereby calling the driver's attention for steering.
    Type: Grant
    Filed: May 26, 2003
    Date of Patent: August 21, 2007
    Assignees: Jtekt Corporation, Aisin Seiki Kabushiki Kaisha
    Inventors: Hiroaki Kato, Minekazu Momiyama, Shoji Ogawa, Kenji Asano, Yuzou Imoto, Yoshiyuki Yasui, Wataru Tanaka, Eiichi Ono, Yuji Muragishi
  • Patent number: 7257474
    Abstract: In a steering system 30, a transmission ratio R1 which is determined in dependence on the vehicle speed by reference to a transmission ratio decision map is multiplied with a first transmission ratio alteration gain g10 which is determined in dependence on the distribution of a traveling drive torque from an engine 11 to front wheels 14 and rear wheels 15, thereby to alter the ratio R1 of steering torque distribution from a steering handle 31 to the front wheels 14, whereby the variation of the steering feeling due to an increase or decrease in the distribution of the traveling drive torque to the front wheels 14 can be suppressed. Further, the transmission ratio R1 is multiplied with a second transmission ratio alteration gain g11 which is determined in dependence on the gradient of the road surface by reference to a second transmission ratio alteration map, thereby to alter the transmission ratio R1, whereby the variation of the steering feeling due to the variation of the gradient can also be suppressed.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: August 14, 2007
    Assignee: JTEKT Corporation
    Inventors: Hiroaki Kato, Shinji Takeuchi, Minekazu Momiyama, Akihiro Ohno, Tsuyoshi Murakami
  • Patent number: 7212903
    Abstract: A vehicle motion control apparatus is provided with an anti-skid control device and a steering angle adjusting device, which adjusts the steering angle of at least one of the front and rear wheels to cancel a yaw deviation between a desired yaw factor and an actual yaw factor, to be substantially zero. An incompatibility between the devices is determined on the basis of a state of the wheel adjusted by the steering angle adjusting device to cancel the yaw deviation. And, a predetermined parameter provided between a vehicle stability directive parameter and a brake directive parameter is set on the basis of the incompatibility. Then, the anti-skid control device controls the braking force applied to each wheel of the vehicle on the basis of the predetermined parameter. Consequently, the anti-skid control giving importance to the braking force can be performed, as long as the steering angle adjusting device is operative.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: May 1, 2007
    Assignees: Advics Co., Ltd., Toyoda Koki Kabushiki Kaisha
    Inventors: Hiroaki Niino, Hiroaki Aizawa, Minekazu Momiyama, Hiroaki Kato
  • Patent number: 7191048
    Abstract: A vehicle motion control apparatus is provided for performing a vehicle stability control on the basis of a parameter indicative of lateral margin for a tire on a road. The apparatus includes a steering control device for controlling a relationship between a steering angle and a tire angle to be varied, and a decelerating control device for controlling a vehicle speed to be decreased. The parameter indicative of lateral margin for the tire is monitored, and the steering control device and the decelerating control device are controlled on the basis of the monitored parameter.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: March 13, 2007
    Assignees: Advics Co., Ltd., Toyoda Koki Kabushiki Kaisha
    Inventors: Hiroaki Aizawa, Hiroaki Niino, Minekazu Momiyama, Hiroaki Kato, Eiichi Ono, Yuji Muragishi, Yoshiyuki Yasui
  • Patent number: 7171296
    Abstract: An electronic control unit calculates a target yaw rate in accordance with a vehicle speed and a steering angle and calculates the yaw rate difference on the basis of the target yaw rate and an actual yaw rate. The electronic control unit estimates the grip factor of a front wheel to road surface and sets a distribution ratio for distribution of a vehicle-control target value among actuators of a steering system, a brake system, and a drive system in accordance with the estimated grip factor. The electronic control unit controls the actuators of the three systems in accordance with control instruction values distributed on the basis of the vehicle-control target value and the distribution ratio.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: January 30, 2007
    Assignee: Toyoda Koki Kabushiki Kaisha
    Inventors: Hiroaki Kato, Minekazu Momiyama, Takayuki Ohta, Akira Kodama
  • Patent number: 7164974
    Abstract: In vehicle roll sensing of the present invention, a self-aligning torque (SAT) estimator estimates a composite value of SATs generated on tire contact patch of right and left wheels. A slip angle computer detects a vehicle speed and a steering angle and computes a slip angle of the wheel from the measured vehicle speed and steering angle. An SAT model value computer estimates an SAT model value as a composite value of SATs of the right and left wheels when no load shifts between the right and left wheels on the basis of the slip angle. A load shift ratio estimator estimates a load shift state of the right and left wheels on the basis of the composite value of the SATs of the wheels and the SAT model value. A vehicle rollover estimator estimates a rollover of the vehicle on the basis of the estimated load-shift state.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: January 16, 2007
    Assignees: Advics Co., Ltd., Toyoda Koki Kabushiki Kaisha
    Inventors: Eiichi Ono, Yuji Muragishi, Hiroaki Aizawa, Hiroaki Niino, Yoshiyuki Yasui, Minekazu Momiyama, Hiroaki Kato
  • Patent number: 7066295
    Abstract: When a variable value indicates that a steering characteristic is understeer, a control unit controls a variable transmission ratio device to change a second steering angle such that the greater the understeer indicated by the variable value, the smaller the steering angle of steered wheels relative to the turning angle of a steering wheel becomes. When the differentiated value of the variable value indicates that the understeer is changing to increase, a correction unit corrects the variable value such that the greater the degree of change of the understeer indicated by the differentiated value, the greater the understeer indicated by the variable value becomes. Hence, the attitude of a vehicle in understeer is stabilized with a simple configuration.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: June 27, 2006
    Assignee: Toyoda Koki Kabushiki Kaisha
    Inventors: Takayuki Ohta, Minekazu Momiyama, Hiroaki Kato
  • Patent number: 7055645
    Abstract: In accordance with a vehicle motion control apparatus, a steering angle (?h) of a steering wheel is determined on the basis of a rotation angle (?pm) of an assist motor (24m) detected by a rotation angle sensor (24s) and a rotation angle (?vm) of a gear ratio variable motor (32m) detected by a rotation angle sensor (32s), and a VGRS control process (40a) of a gear ratio variable mechanism is executed on the basis of the determined steering angle (?h). Accordingly, since the steering angle (?h) of the steering wheel is determined on the basis of the rotation angle (?vm) used for the VGRS control process (40a) of the gear ratio variable mechanism and the rotation angle (?pm) used for an EPS control process (30a) of an EPS actuator, it is possible to obtain the steering angle (?h) of the steering wheel without a steering angle sensor. Therefore, it is possible to reduce the number of the parts of a vehicle motion control apparatus.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: June 6, 2006
    Assignee: Toyoda Koki Kabushiki Kaisha
    Inventors: Hiroaki Kato, Minekazu Momiyama, Yoshiyuki Yasui, Wataru Tanaka, Kenji Asano, Yuzou Imoto, Eiichi Ono, Yuji Muragishi
  • Publication number: 20050273235
    Abstract: When a variable value indicates that a steering characteristic is understeer, a control unit controls a variable transmission ratio device to change a second steering angle such that the greater the understeer indicated by the variable value, the smaller the steering angle of steered wheels relative to the turning angle of a steering wheel becomes. When the differentiated value of the variable value indicates that the understeer is changing to increase, a correction unit corrects the variable value such that the greater the degree of change of the understeer indicated by the differentiated value, the greater the understeer indicated by the variable value becomes. Hence, the attitude of a vehicle in understeer is stabilized with a simple configuration.
    Type: Application
    Filed: May 31, 2005
    Publication date: December 8, 2005
    Applicant: TOYODA KOKI KABUSHIKI KAISHA
    Inventors: Takayuki Ohta, Minekazu Momiyama, Hiroaki Kato
  • Publication number: 20050257988
    Abstract: The control system of a vehicle according to the present invention controls the transmission ratio of the steering angle of a steering wheel relative to a turning angle of front wheels based on a drive force distribution ratio. Thus, the performance of the tires on the front wheels can be used to almost maximum potential, providing effective prevention of understeering. The present invention provides a steering system that limits understeering effectively.
    Type: Application
    Filed: May 20, 2005
    Publication date: November 24, 2005
    Applicant: Toyoda Koki Kabushiki Kaisha
    Inventors: Takayuki Ohta, Shinji Takeuchi, Minekazu Momiyama, Hiroaki Kato, Tsuyoshi Murakami