Patents by Inventor Mineo Asano

Mineo Asano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150144493
    Abstract: An aluminum alloy plate includes peritectic elements and Mg. Wherein plate thickness of the plate is represented as t (mm), a range within ±0.01×t from t/2 is represented as a central portion, a range within ±0.01×t from t/4 is represented as a quarter portion, and a range within 0.02×t from a top surface in the plate thickness direction is represented as a superficial portion, concentration of the peritectic elements is such that a concentration difference between in the central portion and in the quarter portion, and a concentration difference between in the central portion and in the superficial portion are 0.04% (mass %) or less. In addition, concentration of the Mg is such that a concentration difference between in the central portion and in the quarter portion, and a concentration difference between in the central portion and in the superficial portion of the plate thickness are 0.4% or less.
    Type: Application
    Filed: June 6, 2013
    Publication date: May 28, 2015
    Applicant: UACJ Corporation
    Inventors: Yusuke Yamamoto, Mineo Asano
  • Publication number: 20140348698
    Abstract: An aluminum alloy member is used for joining ends of a sheet-like aluminum alloy member by friction stir welding, and forming an anodic oxidation coating on a weld front surface or a weld back surface, the aluminum alloy member including 0.3 to 1.5 mass % of Mg, 0.2 to 1.2 mass % of Si, 0.5 mass % or less of Cu, and 0.2 mass % or less of Fe, with the balance being Al and unavoidable impurities, Fe-containing second phase particles having a particle size (circle equivalent diameter) of more than 1 ?m, among second phase particles dispersed in a matrix of the aluminum alloy member, having an average particle size of 5 ?m or less.
    Type: Application
    Filed: August 6, 2013
    Publication date: November 27, 2014
    Inventors: Mineo Asano, Yusuke Yamamoto, Toshihiko Fukuda
  • Publication number: 20140209350
    Abstract: A plate-like electric conductor for a busbar having excellent electric conductivity, strength and bendability, and a busbar formed therefrom. The electric conductor formed from an aluminum alloy plate having a thickness of 0.5-12 mm is obtained by subjecting an aluminum alloy consisting essentially of Fe: 0.05-2.0%; Si: 0.05-0.6%; Cu: 0.01-0.35%; by mass, and the balance comprising Al and inevitable impurities to a hot rolling process. The electric conductor has the electric conductivity of 55-60% IACS, tensile strength not lower than 170 MPa and yield strength not lower than 155 MPa, in the as-rolled state at the room temperature, and does not suffer from cracking upon bending by 90° with an inner bending radius equal to its thickness, while having the electric conductivity of 55-60% IACS, tensile strength not lower than 160 MPa, and yield strength not lower than 145 MPa, after a heat treatment at 140-160° C. for not longer than 1,000 hours.
    Type: Application
    Filed: April 2, 2014
    Publication date: July 31, 2014
    Applicant: UACJ Corporation
    Inventors: Hidetaka NAKANISHI, Mineo ASANO, Hiroki TANAKA
  • Publication number: 20140044588
    Abstract: An aluminum alloy sheet exhibits excellent surface quality after anodizing without showing a band-like streak pattern. The aluminum alloy sheet is a 5000 series aluminum alloy sheet that includes 1.0 to 6.0 mass % of Mg, wherein the concentration of Mg in a solid-solution state that is present in an outermost surface area of the aluminum alloy sheet varies in the widthwise direction of the aluminum alloy sheet in the form of a band having a width of 0.05 mm or more, and the difference in the concentration of Mg between adjacent bands is 0.20 mass % or less.
    Type: Application
    Filed: June 28, 2013
    Publication date: February 13, 2014
    Inventors: Mineo ASANO, Yusuke YAMAMOTO
  • Publication number: 20130280122
    Abstract: An aluminum alloy sheet that exhibits excellent surface quality after anodizing, includes a peritectic element that undergoes a peritectic reaction with at least aluminum, and requires an anodic oxide coating is characterized in that the concentration of the peritectic element in a solid-solution state that is present in the outermost surface area of the aluminum alloy sheet varies in the widthwise direction of the aluminum alloy sheet in the form of a band having a width of 0.05 mm or less, and the difference in the concentration of the peritectic element between adjacent bands is 0.008 mass % or less.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 24, 2013
    Inventors: Mineo ASANO, Yusuke YAMAMOTO
  • Patent number: 8317947
    Abstract: The present invention provides an aluminum alloy sheet for press forming, having the crystallo-graphic texture in which the orientation density of CR orientation ({001}<520>) is higher than that of any orientation other than the CR orientation. The orientation density of the CR orientation is preferably 10 or more (random ratio). The orientation densities of all orientations other than the CR orientation are preferably less than 10. The aluminum alloy sheet is preferably made of an Al—Mg—Si alloy.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: November 27, 2012
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Mineo Asano, Hidetoshi Uchida
  • Publication number: 20100183899
    Abstract: The present invention provides an aluminum alloy sheet for press forming, having the crystallo-graphic texture in which the orientation density of CR orientation ({001}<520>) is higher than that of any orientation other than the CR orientation. The orientation density of the CR orientation is preferably 10 or more (random ratio). The orientation densities of all orientations other than the CR orientation are preferably less than 10. The aluminum alloy sheet is preferably made of an Al—Mg—Si alloy.
    Type: Application
    Filed: May 29, 2008
    Publication date: July 22, 2010
    Applicant: SUMITOMO LIGHT METAL INDUSTRIES, LTD.
    Inventors: Mineo Asano, Hidetoshi Uchida
  • Publication number: 20080178967
    Abstract: A sheet of a 6000 type aluminum alloy containing Si and Mg as main alloy components and having an excellent formability sufficient to allow flat hemming, excellent resistance to denting, and good hardenability during baking a coating, which exhibits an anisotropy of Lankford values of more than 0.4 or the strength ratio for cube orientations of the texture thereof of 20 or more, and exhibits a minimum bend radius of 0.5 mm or less at 180° bending, even when the offset yield strength thereof exceeds 140 MPa through natural aging; and a method for producing the sheet of the aluminum alloy, which includes the steps of subjecting an ingot to a homogenization treatment, cooling to a temperature lower than 350° C. at a cooling rate of 100° C./hr or more, optionally to room temperature, heating again to a temperature of 300 to 500° C. and subjecting it to hot rolling, cold rolling the hot rolled product, and subjecting the cold rolled sheet to a solution treatment at a temperature of 400° C.
    Type: Application
    Filed: March 21, 2008
    Publication date: July 31, 2008
    Inventors: Hidetoshi Uchida, Tadashi Minoda, Mineo Asano, Yoshikazu Ozeki, Tsutomu Furuyama
  • Publication number: 20080178973
    Abstract: A sheet of a 6000 type aluminum alloy containing Si and Mg as main alloy components and having an excellent formability sufficient to allow flat hemming, excellent resistance to denting, and good hardenability during baking a coating, which exhibits an anisotropy of Lankford values of more than 0.4 or the strength ratio for cube orientations of the texture thereof of 20 or more, and exhibits a minimum bend radius of 0.5 mm or less at 180° bending, even when the offset yield strength thereof exceeds 140 MPa through natural aging; and a method for producing the sheet of the aluminum alloy, which includes the steps of subjecting an ingot to a homogenization treatment, cooling to a temperature lower than 350° C. at a cooling rate of 100° C./hr or more, optionally to room temperature, heating again to a temperature of 300 to 500° C. and subjecting it to hot rolling, cold rolling the hot rolled product, and subjecting the cold rolled sheet to a solution treatment at a temperature of 400° C.
    Type: Application
    Filed: March 21, 2008
    Publication date: July 31, 2008
    Inventors: Hidetoshi Uchida, Tadashi Minoda, Mineo Asano, Yoshikazu Ozeki, Tsutomu Furuyama
  • Publication number: 20080178968
    Abstract: A sheet of a 6000 type aluminum alloy containing Si and Mg as main alloy components and having an excellent formability sufficient to allow flat hemming, excellent resistance to denting, and good hardenability during baking a coating, which exhibits an anisotropy of Lankford values of more than 0.4 or the strength ratio for cube orientations of the texture thereof of 20 or more, and exhibits a minimum bend radius of 0.5 mm or less at 180° bending, even when the offset yield strength thereof exceeds 140 MPa through natural aging; and a method for producing the sheet of the aluminum alloy, which includes the steps of subjecting an ingot to a homogenization treatment, cooling to a temperature lower than 350° C. at a cooling rate of 100° C./hr or more, optionally to room temperature, heating again to a temperature of 300 to 500° C. and subjecting it to hot rolling, cold rolling the hot rolled product, and subjecting the cold rolled sheet to a solution treatment at a temperature of 400° C.
    Type: Application
    Filed: March 21, 2008
    Publication date: July 31, 2008
    Inventors: Hidetoshi Uchida, Tadashi Minoda, Mineo Asano, Yoshikazu Ozeki, Tsutomu Furuyama
  • Publication number: 20040094249
    Abstract: A sheet of a 6000 type aluminum alloy containing Si and Mg as main alloy components and having excellent formability sufficient to allow flat hemming, excellent resistance to denting, and good hardenability during baking a coating, which exhibits an anisotropy of Lankford values of more than 0.4 or the strength ratio for cube orientations of the texture thereof of 20 or more, and exhibits a minimum bend radius of 0.5 mm or less at 180° bending even when the offset yield strength thereof exceeds 140 MPa through natural aging; and a method for producing the sheet of the aluminum alloy, which comprises subjecting an ingot to a homogenization treatment, cooling to a temperature lower than 350° C. at a cooling rate of 100° C./hr or more, optionally to room temperature, heating again to a temperature of 300 to 500° C. and subjecting it to hot rolling, cold rolling the hot rolled product, and subjecting the cold rolled sheet to a solution treatment at a temperature of 400° C.
    Type: Application
    Filed: August 22, 2003
    Publication date: May 20, 2004
    Inventors: Hidetoshi Uchida, Tadashi Minoda, Mineo Asano, Yoshikazu Ozeki, Tsutomu Furuyama
  • Patent number: 6464805
    Abstract: An Al—Mg—Si—Cu aluminum alloy plate excelling in strength and formability and exhibiting improved filiform corrosion resistance which is suitably used for automotive body panels. The aluminum alloy plate contains 0.25-0.6% of Mg (mass %, hereinafter the same), 0.9-1.1% of Si, 0.6-1.0% of Cu, and at least one of 0.20% or less of Mn and 0.10% or less of Cr, with the balance consisting of Al and impurities, wherein the number of Q phases (Cu—Mg—Si—Al phases) with a size of 2 &mgr;m or more in diameter present in a matrix is 150 per mm2 or more. The aluminum alloy plate is fabricated by homogenizing an ingot of an aluminum alloy having the above composition at 530° C. or more, cooling the ingot to 450° C. or less at a cooling rate of 30° C./hour or less, hot-rolling the ingot, cold-rolling the hot-rolled product, and providing the cold-rolled product with a solution heat treatment.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: October 15, 2002
    Assignees: Nissan Motor Co., Ltd., Sumitomo Light Metal Industries, Ltd.
    Inventors: Shinji Matsuda, Tsutomu Hattori, Masahito Katsukura, Tadashi Minoda, Hideo Yoshida, Shinichi Matsuda, Mineo Asano, Tsutomu Furuyama
  • Publication number: 20020005232
    Abstract: An Al—Mg—Si—Cu aluminum alloy plate excelling in strength and formability and exhibiting improved filiform corrosion resistance which is suitably used for automotive body panels. The aluminum alloy plate contains 0.25-0.6% of Mg (mass %, hereinafter the same), 0.9-1.1% of Si, 0.6-1.0% of Cu, and at least one of 0.20% or less of Mn and 0.10% or less of Cr, with the balance consisting of Al and impurities, wherein the number of Q phases (Cu—Mg—Si—Al phases) with a size of 2 &mgr;m or more in diameter present in a matrix is 150 per mm2 or more. The aluminum alloy plate is fabricated by homogenizing an ingot of an aluminum alloy having the above composition at 530° C. or more, cooling the ingot to 450° C. or less at a cooling rate of 30° C./hour or less, hot-rolling the ingot, cold-rolling the hot-rolled product, and providing the cold-rolled product with a solution heat treatment.
    Type: Application
    Filed: March 26, 2001
    Publication date: January 17, 2002
    Inventors: Shinji Matsuda, Tsutomu Hattori, Masahito Katsukura, Tadashi Minoda, Hideo Yoshida, Shinichi Matsuda, Mineo Asano, Tsutomu Furuyama