Patents by Inventor Mineo Muraki

Mineo Muraki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11814707
    Abstract: This soft magnetic powder is represented by composition formula FeaSibBcPdCue with the exception of unavoidable impurities. In the composition formula, a, b, c, d and e satisfy 79?a?84.5 at %, 0?b<6 at %, 4?c?10 at %, 4<d?11 at %, 0.2?e<0.4 at %, and a+b+c+d+e=100 at %.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 14, 2023
    Assignees: TOKIN CORPORATION, JFE STEEL CORPORATION
    Inventors: Akiri Urata, Miho Chiba, Mineo Muraki, Makoto Nakaseko, Takuya Takashita
  • Publication number: 20210031268
    Abstract: Provided is a method of manufacturing a soft magnetic dust core. The method includes: preparing coated powder including amorphous powder made of an Fe-B-Si-P-C-Cu-based alloy, an Fe-B-P-C-Cu-based alloy, an Fe-B-Si-P-Cu-based alloy, or an Fe-B-P-Cu-based alloy, with a first initial crystallization temperature Tx1 and a second initial crystallization temperature Tx2; and a coating formed on a surface of particles of the amorphous powder; applying a compacting pressure to the coated powder or a mixture of the coated powder and the amorphous powder at a temperature equal to or lower than Tx1?100 K; and heating to a maximum end-point temperature equal to or higher than Tx1?50 K and lower than Tx2 with the compacting pressure being applied.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 4, 2021
    Applicants: JFE STEEL CORPORATION, JFE PRECISION CORPORATION, TOKIN CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Naomichi NAKAMURA, Makoto NAKASEKO, Takuya TAKASHITA, Mineo MURAKI, Hoshiaki TERAO, Raita WADA, Akiri URATA, Yu KANAMORI, Makoto YAMAKI, Koichi OKAMOTO, Toshinori TSUDA, Shoichi SATO, Kimihiro OZAKI
  • Publication number: 20200001369
    Abstract: Provided is a method for manufacturing soft magnetic iron powder. A method for manufacturing soft magnetic iron powder, the method including ejecting high-pressure water to collide with a molten metal stream falling vertically downward, breaking up the molten metal stream into metal powder, and cooling the metal powder, in which, when a falling rate of the molten metal stream per unit time is defined as Qm (kg/min) and an ejection rate of high-pressure water per unit time is defined as Qaq (kg/min), a mass ratio (Qaq/Qm) is 50 or more, and a total content of ferrous constituents (Fe, Ni, and Co) is 76 at % or more.
    Type: Application
    Filed: January 25, 2018
    Publication date: January 2, 2020
    Applicant: JFE Steel Corporation
    Inventors: Makoto NAKASEKO, Naomichi NAKAMURA, Mineo MURAKI, Takuya TAKASHITA
  • Publication number: 20190362871
    Abstract: This soft magnetic powder is represented by composition formula FeaSibBcPdCue with the exception of unavoidable impurities. In the composition formula, a, b, c, d and e satisfy 79?a?84.5 at %, 0?b<6 at %, 4?c?10 at %, 4<d?11 at %, 0.2?e<0.4 at %, and a+b+c+d+e=100 at %.
    Type: Application
    Filed: January 26, 2018
    Publication date: November 28, 2019
    Applicants: TOKIN CORPORATION, JFE STEEL CORPORATION
    Inventors: Akiri URATA, Miho CHIBA, Mineo MURAKI, Makoto NAKASEKO, Takuya TAKASHITA
  • Publication number: 20180361474
    Abstract: Provided is a soft magnetic dust core having high density and favorable properties. A method of manufacturing a soft magnetic dust core includes: preparing coated powder including amorphous powder made of an Fe—B—Si—P—C—Cu-based alloy, an Fe—B—P—C—Cu-based alloy, an Fe—B—Si—P—Cu-based alloy, or an Fe—B—P—Cu-based alloy, with a first initial crystallization temperature Tx1 and a second initial crystallization temperature Tx2; and a coating formed on a surface of particles of the amorphous powder; applying a compacting pressure to the coated powder or a mixture of the coated powder and the amorphous powder at a temperature equal to or lower than Tx1?100 K; and heating to a maximum end-point temperature equal to or higher than Tx1?50 K and lower than Tx2 with the compacting pressure being applied.
    Type: Application
    Filed: July 28, 2016
    Publication date: December 20, 2018
    Applicants: JFE STEEL CORPORATION, JFE PRECISION CORPORATION, TOKIN CORPORATION, National Institute of Advanced Industrial Science and Technology
    Inventors: Naomichi NAKAMURA, Makoto NAKASEKO, Takuya TAKASHITA, Mineo MURAKI, Hoshiaki TERAO, Raita WADA, Akiri URATA, Yu KANAMORI, Makoto YAMAKI, Koichi OKAMOTO, Toshinori TSUDA, Shoichi SATO, Kimihiro OZAKI
  • Publication number: 20180169759
    Abstract: Provided is a soft magnetic dust core having high density and favorable properties. A method of manufacturing a soft magnetic dust core includes: preparing coated powder including amorphous powder made of an Fe—B—Si—P—C—Cu-based alloy, an Fe—B—P—C—Cu-based alloy, an Fe—B—Si—P—Cu-based alloy, or an Fe—B—P—Cu-based alloy, with a first initial crystallization temperature Tx1 and a second initial crystallization temperature Tx2; and a coating formed on a surface of particles of the amorphous powder; applying a compacting pressure to the coated powder or a mixture of the coated powder and the amorphous powder at a temperature equal to or lower than Tx1?100 K; and heating to a maximum end-point temperature equal to or higher than Tx1?50 K and lower than Tx2 with the compacting pressure being applied.
    Type: Application
    Filed: July 28, 2016
    Publication date: June 21, 2018
    Applicants: JFE STEEL CORPORATION, JFE PRECISION CORPORATION, TOKIN CORPORATION, National Institute of Advanced Industrial Science and Technology
    Inventors: Naomichi NAKAMURA, Makoto NAKASEKO, Takuya TAKASHITA, Mineo MURAKI, Hoshiaki TERAO, Raita WADA, Akiri URATA, Yu KANAMORI, Makoto YAMAKI, Koichi OKAMOTO, Toshinori TSUDA, Shoichi SATO, Kimihiro OZAKI
  • Patent number: 9011585
    Abstract: A treatment solution for an insulation coating of grain-oriented electrical steel sheets includes at least one selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al and Mn; colloidal silica in a proportion of 0.5 to 10 mol in terms of SiO2; and a water-soluble vanadium compound in a proportion of 0.1 to 2.0 mol in terms of V, relative to PO4:1 mol in the phosphates.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: April 21, 2015
    Assignee: JFE Steel Corporation
    Inventors: Mineo Muraki, Minoru Takashima, Tomofumi Shigekuni
  • Publication number: 20140245926
    Abstract: A treatment solution for an insulation coating of grain-oriented electrical steel sheets includes at least one selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al and Mn; colloidal silica in a proportion of 0.5 to 10 mol in terms of SiO2; and a water-soluble vanadium compound in a proportion of 0.1 to 2.0 mol in terms of V, relative to PO4:1 mol in the phosphates.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: JFE Steel Corporation
    Inventors: Mineo Muraki, Minoru Takashima, Tomofumi Shigekuni
  • Patent number: 8771795
    Abstract: A treatment solution for insulation coating for grain-oriented electrical steel sheets contains at least one selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn; colloidal silica in a proportion of 0.5 to 10 mol in terms of SiO2 and a water-soluble vanadium compound in a proportion of 0.1 to 2.0 mol in terms of V, relative to PO4:1 mol in the phosphates.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: July 8, 2014
    Assignee: JFE Steel Corporation
    Inventors: Mineo Muraki, Minoru Takashima, Tomofumi Shigekuni
  • Patent number: 8535455
    Abstract: A treatment solution for an insulation coating for a grain oriented electrical steel sheet includes at least one member selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn, and colloidal silica in a proportion of 0.5 to 10 mol in terms of SiO2 and at least one member selected from permanganates of Mg, Sr, Zn, Ba, and Ca in a proportion of 0.02 to 2.5 mol in terms of metal elements in the permanganates, relative to PO4:1 mol in the phosphates.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: September 17, 2013
    Assignee: JFE Steel Corporation
    Inventors: Minoru Takashima, Mineo Muraki, Makoto Watanabe, Tomofumi Shigekuni
  • Patent number: 8409370
    Abstract: A treatment solution for insulation coating for grain oriented electrical steel sheet includes at least one member selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn, and colloidal silica in a proportion of 0.2 to 10 mol in terms of SiO2 and a titanium chelate compound in a proportion of 0.01 to 4.0 mol in terms of Ti, relative to PO4: 1 mol in the phosphates.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: April 2, 2013
    Assignee: JFE Steel Corporation
    Inventors: Minoru Takashima, Mineo Muraki, Makoto Watanabe, Tomofumi Shigekuni
  • Publication number: 20120131982
    Abstract: An electrical steel sheet contains, as components, by mass %, 0.005% or less of C, 1.0% to 8.0% of Si, and 0.005% to 1.0% of Mn; one or more selected from Nb, Ta, V, and Zr such that a total content thereof is 10 to 50 ppm; and the balance being Fe and unavoidable impurities, wherein at least 10% of the content of Nb, Ta, V, and Zr is in the form of precipitates; the precipitates have an average diameter (equivalent circle diameter) of 0.02 to 3 ?m; and secondary recrystallized grains of the steel sheet have an average grain size of 5 mm or more.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 31, 2012
    Applicant: JFE STEEL CORPORATION
    Inventors: Takeshi Imamura, Yukihiro Shingaki, Mineo Muraki
  • Publication number: 20110236581
    Abstract: A treatment solution for insulation coating for grain-oriented electrical steel sheets contains at least one selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn; colloidal silica in a proportion of 0.5 to 10 mol in terms of SiO2 and a water-soluble vanadium compound in a proportion of 0.1 to 2.0 mol in terms of V, relative to PO4:1 mol in the phosphates.
    Type: Application
    Filed: July 30, 2008
    Publication date: September 29, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Mineo Muraki, Minoru Takashima, Tomofumi Shigekuni
  • Publication number: 20110067786
    Abstract: A treatment solution for an insulation coating for a grain oriented electrical steel sheet includes at least one member selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn, and colloidal silica in a proportion of 0.5 to 10 mol in terms of SiO2 and at least one member selected from permanganates of Mg, Sr, Zn, Ba, and Ca in a proportion of 0.02 to 2.5 mol in terms of metal elements in the permanganates, relative to PO4:1 mol in the phosphates.
    Type: Application
    Filed: August 20, 2008
    Publication date: March 24, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Minoru Takashima, Mineo Muraki, Makoto Watanabe, Tomofumi Shigekuni
  • Publication number: 20100206437
    Abstract: A treatment solution for insulation coating for grain oriented electrical steel sheet includes at least one member selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn, and colloidal silica in a proportion of 0.2 to 10 mol in terms of SiO2 and a titanium chelate compound in a proportion of 0.01 to 4.0 mol in terms of Ti, relative to PO4: 1 mol in the phosphates.
    Type: Application
    Filed: August 28, 2008
    Publication date: August 19, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Minoru Takashima, Mineo Muraki, Makoto Watanabe, Tomofumi Shigekuni
  • Patent number: 7727644
    Abstract: In a grain-oriented electrical steel sheet having phosphate-based coatings, which contain no chromium and which impart a tension, on the surfaces of a steel sheet with ceramic underlying films therebetween, the coating amount of oxygen in the underlying film is 2.0 g/m2 or more and 3.5 g/m2 or less relative to both surfaces of the steel sheet. Consequently, a grain-oriented electrical steel sheet with a chromium-less coating is provided. The resulting steel sheet has coating properties at the same level as those of a steel sheet with chromium-containing coatings and realizes high hygroscopicity resistance and a low iron loss without variations.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: June 1, 2010
    Assignee: JFE Steel Corporation
    Inventors: Makoto Watanabe, Hiroaki Toda, Mineo Muraki
  • Publication number: 20080190520
    Abstract: In a grain-oriented electrical steel sheet having phosphate-based coatings, which contain no chromium and which impart a tension, on the surfaces of a steel sheet with ceramic underlying films therebetween, the coating amount of oxygen in the underlying film is 2.0 g/m2 or more and 3.5 g/m2 or less relative to both surfaces of the steel sheet. Consequently, a grain-oriented electrical steel sheet with a chromium-less coating is provided. The resulting steel sheet has coating properties at the same level as those of a steel sheet with chromium-containing coatings and realizes high hygroscopicity resistance and a low iron loss without variations.
    Type: Application
    Filed: November 7, 2005
    Publication date: August 14, 2008
    Applicant: JFE Steel Corporation, a corporation of Japan
    Inventors: Makoto Watanabe, Hiroaki Toda, Mineo Muraki
  • Patent number: 7341690
    Abstract: The soft Cr-containing steel includes, on a % by mass basis, C: from about 0.001% to about 0.020%, Si: more than about 0.10% and less than about 0.50%, Mn: less than about 2.00%, P: less than about 0.060%, S: less than about 0.008%, Cr: from about 12.0% to about 16.0%, Ni: from about 0.05% to about 1.00%, N: less than about 0.020%, Nb: from about 10×(C+N) to about 1.00%, Mo: more than about 0.80% and less than about 3.00%, wherein the contents of alloying elements, represented by Si and Mo, respectively, on a % by mass, satisfy the formula Si?1.2?0.4Mo, so as to prevent precipitation of the Laves phase and to stably secure an effect of increasing high-temperature strength due to solid solution Mo.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: March 11, 2008
    Assignee: JFE Steel Corporation
    Inventors: Atsushi Miyazaki, Junichiro Hirasawa, Mineo Muraki, Yoshihiro Yazawa, Osamu Furukimi
  • Patent number: 7025838
    Abstract: A ferritic stainless steel sheet for use in automobile fuel tanks and fuel pipes having smooth surface and resistance to organic acid is provided. The sheet contains, by mass, not more than about 0.1% C, not more than about 1.0 Si, not more than about 1.5% Mn, not more than about 0.06% P, not more than about 0.03% S, about 11% to about 23% Cr, not more than about 2.0% Ni, about 0.5% to about 3.0% Mo, not more than about 1.0% Al, not more than about 0.04% N, at least one of not more than about 0.8% Nb and not more than about 1.0% Ti, and the balance being Fe and unavoidable impurities, satisfying the relationship: 18?Nb/(C+N)+2Ti/(C+N)?60, wherein C, N, Nb, and Ti in the relationship represent the C, N, Nb, and Ti contents by mass percent, respectively. A process for making the same is also provided.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: April 11, 2006
    Assignee: JFE Steel Corporation
    Inventors: Yoshihiro Yazawa, Osamu Furukimi, Mineo Muraki, Yoshihiro Ozaki, Kunio Fukuda, Yukihiro Baba
  • Patent number: RE44709
    Abstract: The soft Cr-containing steel includes, on a % by mass basis, C: from about 0.001% to about 0.020%, Si: more than about 0.10% and less than about 0.50%, Mn: less than about 2.00%, P: less than about 0.060%, S: less than about 0.008%, Cr: from about 12.0% to about 16.0%, Ni: from about 0.05% to about 1.00%, N: less than about 0.020%, Nb: from about 10×(C+N) to about 1.00%, Mo: more than about 0.80% and less than about 3.00%, wherein the contents of alloying elements, represented by Si and Mo, respectively, on a % by mass, satisfy the formula Si?1.2-0.4 Mo, so as to prevent precipitation of the Laves phase and to stably secure an effect of increasing high-temperature strength due to solid solution Mo.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: January 21, 2014
    Assignee: JFE Steel Corporation
    Inventors: Atsushi Miyazaki, Junichiro Hirasawa, Mineo Muraki, Yoshihiro Yazawa, Osamu Furukimi