Patents by Inventor Ming-Bo Liu

Ming-Bo Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11544010
    Abstract: An exemplary semiconductor device includes an input/output (I/O) circuit configured to combine data corresponding to a write command received via data terminals with a first subset of corrected read data retrieved from a memory cell array to provide write data. The exemplary semiconductor device further includes a write driver circuit configured to mask a write operation of a first bit of the write data that corresponds to a bit of the first subset of the read data and to perform a write operation for a second bit of the write data that corresponds to the data received via the data terminals.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: January 3, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Yuan He, Ming-Bo Liu
  • Publication number: 20210294533
    Abstract: An exemplary semiconductor device includes an input/output (I/O) circuit configured to combine data corresponding to a write command received via data terminals with a first subset of corrected read data retrieved from a memory cell array to provide write data. The exemplary semiconductor device further includes a write driver circuit configured to mask a write operation of a first bit of the write data that corresponds to a bit of the first subset of the read data and to perform a write operation for a second bit of the write data that corresponds to the data received via the data terminals.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 23, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Yuan He, Ming-Bo Liu
  • Patent number: 11056171
    Abstract: Apparatuses and methods for wide clock frequency range command paths are disclosed. An example apparatus includes a command decoder and a command timing circuit. The command decoder is configured to receive a command and is further configured to decode the command to provide a decoded command. The command timing circuit is configured to receive the decoded command responsive to a clock and is further configured to provide a delayed internal command having a delay relative to receiving the decoded command based on clock frequency information indicative of a clock frequency of the clock. The command timing circuit includes a plurality of command timing paths. Each of the plurality of command timing paths is configured to provide a respective delay to the decoded command for a respective range of clock frequencies.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: July 6, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Kallol Mazumder, Kangjoo Lee, Ming-Bo Liu
  • Publication number: 20210201978
    Abstract: Apparatuses and methods for wide clock frequency range command paths are disclosed. An example apparatus includes a command decoder and a command timing circuit. The command decoder is configured to receive a command and is further configured to decode the command to provide a decoded command. The command timing circuit is configured to receive the decoded command responsive to a clock and is further configured to provide a delayed internal command having a delay relative to receiving the decoded command based on clock frequency information indicative of a clock frequency of the clock. The command timing circuit includes a plurality of command timing paths. Each of the plurality of command timing paths is configured to provide a respective delay to the decoded command for a respective range of clock frequencies.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 1, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kallol Mazumder, Kangjoo Lee, Ming-Bo Liu
  • Patent number: 11023173
    Abstract: An exemplary semiconductor device includes an input/output (I/O) circuit configured to combine data corresponding to a write command received via data terminals with a first subset of corrected read data retrieved from a memory cell array to provide write data. The exemplary semiconductor device further includes a write driver circuit configured to mask a write operation of a first bit of the write data that corresponds to a bit of the first subset of the read data and to perform a write operation for a second bit of the write data that corresponds to the data received via the data terminals.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: June 1, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Yuan He, Ming-Bo Liu
  • Publication number: 20210064282
    Abstract: An exemplary semiconductor device includes an input/output (I/O) circuit configured to combine data corresponding to a write command received via data terminals with a first subset of corrected read data retrieved from a memory cell array to provide write data. The exemplary semiconductor device further includes a write driver circuit configured to mask a write operation of a first bit of the write data that corresponds to a bit of the first subset of the read data and to perform a write operation for a second bit of the write data that corresponds to the data received via the data terminals.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 4, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Yuan He, Ming-Bo Liu
  • Patent number: 10803924
    Abstract: Systems and methods include capture circuitry configured to capture a write signal from a host device using a data strobe signal from the host device and to output one or more indications of capture of the write signal. Calculation circuitry is configured to receive the data strobe signal, receive the one or more indications of capture, and determine a delay between a first edge of the data strobe signal and receipt of the one or more indications of capture. The systems and methods also include transmission and control circuitry configured to launch subsequent write signals at a time based at least in part on the delay.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: October 13, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Ming-Bo Liu, Daniel B. Penney
  • Patent number: 10679683
    Abstract: An apparatus, such as a memory device, that includes circuits and techniques to synchronize various internal signals with an internal clock signal to ensure proper functionality of the memory device. A walk back circuit is provided to mimic propagation delays of an internal command signal, such as a write command signal, and to speed up the delayed internal command signal an amount equivalent to the propagation delays. The walk back circuit includes a mixture of delay elements provided to mimic propagation delays caused by both gate delays and routing delays.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: June 9, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Liang Chen, Ming-Bo Liu
  • Patent number: 10607671
    Abstract: An apparatus, such as a memory device, that includes circuits and techniques to synchronize various internal signals with an internal clock signal to ensure proper functionality of the memory device. A walk back circuit is provided to mimic propagation delays of an internal command signal, such as a write command signal, and to speed up the delayed internal command signal an amount equivalent to the propagation delays. The walk back circuit includes a mixture of delay elements provided to mimic propagation delays caused by both gate delays and routing delays.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: March 31, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Liang Chen, Ming-Bo Liu
  • Publication number: 20190392888
    Abstract: Systems and methods include capture circuitry configured to capture a write signal from a host device using a data strobe signal from the host device and to output one or more indications of capture of the write signal. Calculation circuitry is configured to receive the data strobe signal, receive the one or more indications of capture, and determine a delay between a first edge of the data strobe signal and receipt of the one or more indications of capture. The systems and methods also include transmission and control circuitry configured to launch subsequent write signals at a time based at least in part on the delay.
    Type: Application
    Filed: July 17, 2019
    Publication date: December 26, 2019
    Inventors: Ming-Bo Liu, Daniel B. Penney
  • Patent number: 10418090
    Abstract: Systems and methods include capture circuitry configured to capture a write signal from a host device using a data strobe signal from the host device and to output one or more indications of capture of the write signal. Calculation circuitry is configured to receive the data strobe signal, receive the one or more indications of capture, and determine a delay between a first edge of the data strobe signal and receipt of the one or more indications of capture. The systems and methods also include transmission and control circuitry configured to launch subsequent write signals at a time based at least in part on the delay.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: September 17, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Ming-Bo Liu, Daniel B. Penney
  • Publication number: 20190259442
    Abstract: An apparatus, such as a memory device, that includes circuits and techniques to synchronize various internal signals with an internal clock signal to ensure proper functionality of the memory device. A walk back circuit is provided to mimic propagation delays of an internal command signal, such as a write command signal, and to speed up the delayed internal command signal an amount equivalent to the propagation delays. The walk back circuit includes a mixture of delay elements provided to mimic propagation delays caused by both gate delays and routing delays.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 22, 2019
    Inventors: Liang Chen, Ming-Bo Liu
  • Patent number: 6778453
    Abstract: A method for storing a temperature threshold in an integrated circuit includes measuring operating parameters of the integrated circuit versus temperature, calculating a maximum temperature at which the integrated circuit performance exceeds predetermined specifications and storing parameters corresponding to the maximum temperature in a comparison circuit in the integrated circuit by selectively blowing fusable devices in the comparison circuit. The fusable devices may be antifuses.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: August 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Christopher B. Cooper, Ming-Bo Liu, Chris G. Martin, Troy A. Manning, Stephen L. Casper, Charles H. Dennison, Brian M. Shirley, Brian L. Brown, Shubneesh Batra
  • Publication number: 20030174559
    Abstract: A method for storing a temperature threshold in an integrated circuit includes measuring operating parameters of the integrated circuit versus temperature, calculating a maximum temperature at which the integrated circuit performance exceeds predetermined specifications and storing parameters corresponding to the maximum temperature in a comparison circuit in the integrated circuit by selectively blowing fusable devices in the comparison circuit. The fusable devices may be antifuses.
    Type: Application
    Filed: February 24, 2003
    Publication date: September 18, 2003
    Inventors: Christopher B. Cooper, Ming-Bo Liu, Chris G. Martin, Troy A. Manning, Stephen L. Casper, Charles H. Dennison, Brian M. Shirley, Brian L. Brown, Shubneesh Batra
  • Patent number: 6552945
    Abstract: A method for storing a temperature threshold in an integrated circuit includes measuring operating parameters of the integrated circuit versus temperature, calculating a maximum temperature at which the integrated circuit performance exceeds predetermined specifications and storing parameters corresponding to the maximum temperature in a comparison circuit in the integrated circuit by selectively blowing fusable devices in the comparison circuit. The fusable devices may be antifuses. As a result, the integrated circuit is able to provide signals to devices external to the integrated circuit to indicate that the integrated circuit may be too hot to operate properly.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: April 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Christopher B. Cooper, Ming-Bo Liu, Chris G. Martin, Troy A. Manning, Stephen L. Casper, Charles H. Dennison, Brian M. Shirley, Brian L. Brown, Shubneesh Batra
  • Publication number: 20010009528
    Abstract: A method for storing a temperature threshold in an integrated circuit includes measuring operating parameters of the integrated circuit versus temperature, calculating a maximum temperature at which the integrated circuit performance exceeds predetermined specifications and storing parameters corresponding to the maximum temperature in a comparison circuit in the integrated circuit by selectively blowing fusable devices in the comparison circuit. The fusable devices may be antifuses. As a result, the integrated circuit is able to provide signals to devices external to the integrated circuit to indicate that the integrated circuit may be too hot to operate properly.
    Type: Application
    Filed: January 23, 2001
    Publication date: July 26, 2001
    Inventors: Christopher B. Cooper, Ming-Bo Liu, Chris G. Martin, Troy A. Manning, Stephen L. Casper, Charles H. Dennison, Brian M. Shirley, Brian L. Brown, Shubneesh Batra
  • Patent number: 6233190
    Abstract: A method for storing a temperature threshold in an integrated circuit includes measuring operating parameters of the integrated circuit versus temperature, calculating a maximum temperature at which the integrated circuit performance exceeds predetermined specifications and storing parameters corresponding to the maximum temperature in a comparison circuit in the integrated circuit by selectively blowing fusable devices in the comparison circuit. The fusable devices may be antifuses. As a result, the integrated circuit is able to provide signals to devices external to the integrated circuit to indicate that the integrated circuit may be too hot to operate properly.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: May 15, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Christopher B. Cooper, Ming-Bo Liu, Chris G. Martin, Troy A. Manning, Stephen L. Casper, Charles H. Dennison, Brian M. Shirley, Brian L. Brown, Shubneesh Batra
  • Patent number: 5694073
    Abstract: A supply-voltage detecting stage (11) that supplies first and second reference currents (I.sub.REFP and I.sub.REFN) which vary with the supply voltage (V.sub.cc) and are coupled by first and second gain stages (12A and 12B), respectively, to first and second temperature-detecting stages (13A and 13B), respectively. First and second temperature-detecting stages (13A and 13B) increase the coupled reference currents (I.sub.REFP and I.sub.REFN), respectively, to compensate for temperature increase through use temperature-sensitive, long-channel transistors (M34-M37 and M42-M45), supplying temperature and supply-voltage compensated output bias voltages at output terminals (MIRN and MIRP).
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: December 2, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Timothy J. Coots, Phat C. Truong, Sung-Wei Lin, Tim M. Coffman, Ming-Bo Liu, Ronald J. Syzdek