Patents by Inventor Ming-Chang Tsou

Ming-Chang Tsou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150357925
    Abstract: A controller for eliminating acoustic noise of a power converter includes a control unit and a gate signal generation unit. The control unit is used for detecting a frequency corresponding to a gate control signal in a burst mode of the power converter. When the frequency is greater than a predetermined frequency, the control unit increases a resistance of a compensation resistor coupled to a compensation pin of the power converter; and when the frequency is less than the predetermined frequency, the control unit decreases the resistance of the compensation resistor. The gate signal generation unit is coupled to the control unit for generating the gate control signal to a power switch of a primary side of the power converter according to the resistance of the compensation resistor. The power switch is turned on according to the gate control signal.
    Type: Application
    Filed: June 8, 2015
    Publication date: December 10, 2015
    Inventors: Ming-Chang Tsou, Meng-Jen Tsai
  • Patent number: 9197054
    Abstract: A circuit for controlling a latch mode of a pulse width modulation circuit includes a D flip-flop, a voltage generation unit, a comparator, and a logic unit. The D flip-flop generates a switch control signal according to a latch enable signal. The voltage generation unit generates a discharge current, and a voltage divider resistor group included in the voltage generation unit generates a first voltage when the voltage generation unit is turned on according to the switch control signal. A voltage of a predetermined pin of the pulse width modulation circuit is equal to a predetermined voltage when the discharge current is equal to the charge current. The comparator compares a reference voltage with the first voltage to generate a comparison signal. The logic unit generates a clear signal according to the comparison signal. The D flip-flop clears the switch control signal according to the clear signal.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: November 24, 2015
    Assignee: Leadtrend Technology Corp.
    Inventors: Ming-Chang Tsou, Fong-Cheng Yang, Shun-Chin Chou
  • Patent number: 9160233
    Abstract: A controller for controlling a power converter to output constant power includes a current sensing module, a voltage generation module, and a voltage regulation module. The current sensing module generates a sensing current according to an output current flowing through a secondary side of the power converter. The voltage generation module generates a set voltage corresponding to a reciprocal of the sensing current according to the sensing current. The voltage regulation module generates a regulation voltage to a feedback circuit of the secondary side of the power converter according to the set voltage and a sensing voltage corresponding to an output voltage of the secondary side of the power converter. The feedback circuit and a primary side of the power converter regulate the output voltage according to the regulation voltage, where a product of the output voltage and the output current is a constant value.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: October 13, 2015
    Assignee: Leadtrend Technology Corp.
    Inventors: Meng-Jen Tsai, Ming-Chang Tsou
  • Publication number: 20150207311
    Abstract: A control circuit applied to a power converter includes a multi-functional pin, a zero-crossing signal generator, and an over-voltage detector. The multi-functional pin is used for receiving an auxiliary current generated by an auxiliary winding of the power converter, and an input current. The zero-crossing signal generator is used for generating a zero-crossing signal according to the auxiliary current. The over-voltage detector is used for generating an over-voltage signal according to the auxiliary current. The control circuit generates a switch control signal to the power switch according to the zero-crossing signal, or generates an over-voltage protection signal to the power switch according to the over-voltage signal.
    Type: Application
    Filed: January 19, 2015
    Publication date: July 23, 2015
    Inventors: Chih-Chi Chang, Da-Chun Wei, Ming-Chang Tsou, Meng-Jen Tsai
  • Patent number: 9077249
    Abstract: A power controller includes a clock generator, a low-frequency clock generator, and a protection circuit. The clock generator provides a clock signal with a clock frequency for periodically switching on and off a power switch. The low-frequency clock generator provides a low-frequency clock signal with a frequency lower than the clock frequency. The protection circuit includes an over-power detection circuit and a logic circuit. The over-power detection circuit determines whether an over power event has occurred according to a feedback signal controlled by an output voltage of the power supply. When the over power event lasts longer than an over power tolerance duration, the logic circuit isolates the power switch from the clock signal to keep the power switch turned off. The over power tolerance duration is equal to a predetermined clock cycles of the low-frequency clock signal.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 7, 2015
    Assignee: Leadtrend Technology Corp.
    Inventors: Ming-Chang Tsou, Kuo-Chien Huang
  • Patent number: 9048723
    Abstract: An active feedback control integrated circuit applied to an alternating current/direct current converter includes a feedback pin, an operation unit, a control unit, and a controlled-current generation unit. The feedback pin is used for receiving a feedback current of an output feedback unit of the alternating current/direct current converter. The operation unit is used for generating an operation signal according to the feedback current. The control unit is coupled to the operation unit for generating a current control signal. The controlled-current generation unit is coupled to the control unit for generating a controlled current to the feedback pin according to the current control signal.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 2, 2015
    Assignee: Leadtrend Technology Corp.
    Inventors: Ming-Chang Tsou, Meng-Jen Tsai
  • Publication number: 20150124491
    Abstract: Herein is disclosed a control method suitable for a switching mode power supply. A power switch is controlled according to a clock signal to transfer electrical energy from an input power source to an output power source. A feedback signal is provided in response to an output voltage of the output power source. A clock signal is generated in response to the feedback signal and an input voltage of the input power source. The clock signal has a clock frequency determining a switching frequency of the power switch. When the feedback signal exceeds a relatively-high level, the clock frequency increases in response to decrease to the input voltage. When the feedback signal is below a relatively low level, the clock frequency is independent from the input voltage.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Inventors: Ming Chang Tsou, Meng Jen Tsai
  • Publication number: 20140233268
    Abstract: A controller of a power converter with adjustable jitter amplitude includes a feedback pin, a logic circuit, an auxiliary pin, and a current sensing pin. The feedback pin is used for receiving a feedback voltage from a secondary side of the power converter. The feedback voltage corresponds to an output voltage of the secondary side of the power converter. The logic circuit is used for generating a jitter signal according to a clock, the feedback voltage, and a first resistor. The auxiliary pin is used for receiving a voltage corresponding to an auxiliary winding of the power converter. The current sensing pin is used for generating a detection voltage according to a current flowing through a primary side of the power converter. The voltage, the jitter signal, and the detection voltage determine turning-on time of the primary side of the power converter.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 21, 2014
    Applicant: Leadtrend Technology Corp.
    Inventors: Ming-Chang Tsou, Jiun-Sheng Huang, Kuo-Chien Huang, Ren-Yi Chen
  • Publication number: 20140211511
    Abstract: A device for detecting an average output current of a power converter includes a current generation unit, a first voltage generation unit, a first current mirror unit, and a second current mirror unit. The current generation unit generates a first charge current according to an intermediate voltage. The first voltage generation unit generates a first node voltage according to the first charge current, a first discharge current, a turning-on time, and an inverse turning-on time. The first current mirror unit generates a first current according to the first node voltage, and generates a second voltage corresponding to the average output current of a secondary side of the power converter according to the first current. The second current mirror unit generates the first discharge current according to the first current.
    Type: Application
    Filed: January 26, 2014
    Publication date: July 31, 2014
    Applicant: Leadtrend Technology Corp.
    Inventors: Meng-Jen Tsai, Chih-Chi Chang, Ming-Chang Tsou
  • Publication number: 20140146581
    Abstract: A power controller with over power protection is disclosed, capable of providing a pulse-width-modulation signal to control a power switch. The power controller comprises a pulse width modulator, first and second oscillators, and an over power detector. The pulse width modulator generates the pulse-width-modulation signal. The first oscillator is coupled to the pulse width modulator, for determining a cycle time of the pulse-width-modulation signal. The second oscillator, independent from the first oscillator, determines a maximum over power duration. The over power detector detects the occurrence of an over power event. When the over power event lasts for the maximum over power duration, the pulse-width-modulation signal switches OFF the power switch constantly.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 29, 2014
    Applicant: Leadtrend Technology Corporation
    Inventors: Ming Chang Tsou, Meng Jen Tsai
  • Publication number: 20140098570
    Abstract: A controller for controlling a power converter to output constant power includes a current sensing module, a voltage generation module, and a voltage regulation module. The current sensing module generates a sensing current according to an output current flowing through a secondary side of the power converter. The voltage generation module generates a set voltage corresponding to a reciprocal of the sensing current according to the sensing current. The voltage regulation module generates a regulation voltage to a feedback circuit of the secondary side of the power converter according to the set voltage and a sensing voltage corresponding to an output voltage of the secondary side of the power converter. The feedback circuit and a primary side of the power converter regulate the output voltage according to the regulation voltage, where a product of the output voltage and the output current is a constant value.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 10, 2014
    Applicant: Leadtrend Technology Corp.
    Inventors: Meng-Jen Tsai, Ming-Chang Tsou
  • Publication number: 20140043876
    Abstract: An active feedback control integrated circuit applied to an alternating current/direct current converter includes a feedback pin, an operation unit, a control unit, and a controlled-current generation unit. The feedback pin is used for receiving a feedback current of an output feedback unit of the alternating current/direct current converter. The operation unit is used for generating an operation signal according to the feedback current. The control unit is coupled to the operation unit for generating a current control signal. The controlled-current generation unit is coupled to the control unit for generating a controlled current to the feedback pin according to the current control signal.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 13, 2014
    Applicant: LEADTREND TECHNOLOGY CORP.
    Inventors: Ming-Chang Tsou, Meng-Jen Tsai
  • Publication number: 20140043874
    Abstract: A circuit for controlling a latch mode of a pulse width modulation circuit includes a D flip-flop, a voltage generation unit, a comparator, and a logic unit. The D flip-flop generates a switch control signal according to a latch enable signal. The voltage generation unit generates a discharge current, and a voltage divider resistor group included in the voltage generation unit generates a first voltage when the voltage generation unit is turned on according to the switch control signal. A voltage of a predetermined pin of the pulse width modulation circuit is equal to a predetermined voltage when the discharge current is equal to the charge current. The comparator compares a reference voltage with the first voltage to generate a comparison signal. The logic unit generates a clear signal according to the comparison signal. The D flip-flop clears the switch control signal according to the clear signal.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 13, 2014
    Applicant: Leadtrend Technology Corp.
    Inventors: Ming-Chang Tsou, Fong-Cheng Yang, Shun-Chin Chou
  • Publication number: 20140036558
    Abstract: Disclosure includes an exemplified power controller for controlling a power switch in a power supply. The power supply converts an input power source into an output power source. The exemplified power controller comprises a maximum frequency maker, a voltage detector, and a logic circuit. Based on dependence of a maximum switching frequency upon a compensation signal, the maximum frequency maker provides a control signal with a minimum switching cycle. The compensation signal correlates to an output power from the output power source, and the minimum switching cycle is the reciprocal of the maximum switching frequency. The voltage detector detects a line voltage of the input power source. The logic circuit controls the power switch in response to the control signal, and makes a switching cycle of the power switch not less than the minimum switching cycle. The line voltage determines the dependence.
    Type: Application
    Filed: July 17, 2013
    Publication date: February 6, 2014
    Inventors: Ming Chang Tsou, Meng Jen Tsai, Chao Chih Lin, Ren Yi Chen
  • Publication number: 20130235627
    Abstract: A start-up circuit to discharge EMI filter is developed for power saving. It includes a detection circuit detecting a power source for generating a sample signal. A sample circuit is coupled to the detection circuit for generating a reset signal in response to the sample signal. The reset signal is utilized for discharging a stored voltage of the EMI filter.
    Type: Application
    Filed: April 25, 2013
    Publication date: September 12, 2013
    Applicant: SYSTEM GENERAL CORP.
    Inventors: WEI-HSUAN HUANG, MENG-JEN TSAI, CHIEN-YUAN LIN, MING-CHANG TSOU, CHUAN-CHANG LI, GWO-HWA WANG
  • Patent number: 8461915
    Abstract: A start-up circuit to discharge EMI filter is developed for power saving. It includes a detection circuit detecting a power source for generating a sample signal. A sample circuit is coupled to the detection circuit for generating a reset signal in response to the sample signal. The reset signal is utilized for discharging a stored voltage of the EMI filter.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: June 11, 2013
    Assignee: System General Corp.
    Inventors: Wei-Hsuan Huang, Meng-Jen Tsai, Chien-Yuan Lin, Ming-Chang Tsou, Chuan-Chang Li, Gwo-Hwa Wang
  • Publication number: 20130049706
    Abstract: A circuit for discharging an X capacitor includes an AC detection unit, a reset unit, a counter, and a discharging unit. The AC detection unit is coupled to two terminals of the X capacitor through a pin. The AC detection unit has a plurality of reference levels for detecting a DC voltage level according to the plurality of reference levels, and outputting a detection signal. The reset unit is coupled to the AC detection unit for generating a reset signal according to the detection signal. The counter is coupled to the reset unit for being reset according to the reset signal. When the counter does not receive the reset signal within a first predetermined time, the counter generates a turning-on signal. The discharging unit is coupled to the counter for discharging the X capacitor according to the turning-on signal.
    Type: Application
    Filed: August 29, 2012
    Publication date: February 28, 2013
    Inventors: Kuo-Chien Huang, Shun-Chin Chou, Ming-Chang Tsou
  • Publication number: 20100309694
    Abstract: A start-up circuit to discharge EMI filter is developed for power saving. It includes a detection circuit detecting a power source for generating a sample signal. A sample circuit is coupled to the detection circuit for generating a reset signal in response to the sample signal. The reset signal is utilized for discharging a stored voltage of the EMI filter.
    Type: Application
    Filed: August 12, 2009
    Publication date: December 9, 2010
    Inventors: Wei-Hsuan HUANG, Meng-Jen Tsai, Chien-Yuan Lin, Ming-Chang Tsou, Chuan-Chang Li, Gwo-Hwa Wang