Patents by Inventor Ming-Chi Huang

Ming-Chi Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153826
    Abstract: Semiconductor devices and methods which utilize a treatment process of a bottom anti-reflective layer are provided. The treatment process may be a physical treatment process in which material is added in order to fill holes and pores within the material of the bottom anti-reflective layer or else the treatment process may be a chemical treatment process in which a chemical reaction is used to form a protective layer. By treating the bottom anti-reflective layer the diffusion of subsequently applied chemicals is reduced or eliminated, thereby helping to prevent defects that arise from such diffusion.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 9, 2024
    Inventors: Yao-Wen Hsu, Ming-Chi Huang, Ying-Liang Chuang
  • Publication number: 20240096707
    Abstract: A method includes forming a gate stack, which includes a first portion over a portion of a first semiconductor fin, a second portion over a portion of a second semiconductor fin, and a third portion connecting the first portion to the second portion. An anisotropic etching is performed on the third portion of the gate stack to form an opening between the first portion and the second portion. A footing portion of the third portion remains after the anisotropic etching. The method further includes performing an isotropic etching to remove a metal gate portion of the footing portion, and filling the opening with a dielectric material.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Ming-Chi Huang, Kuo-Bin Huang, Ying-Liang Chuang, Ming-Hsi Yeh
  • Patent number: 11923428
    Abstract: A semiconductor device includes a fin structure disposed over a substrate. The semiconductor device includes a first interfacial layer straddling the fin structure. The semiconductor device includes a gate dielectric layer extending along sidewalls of the fin structure. The semiconductor device includes a second interfacial layer overlaying a top surface of the fin structure. The semiconductor device includes a gate structure straddling the fin structure. The first interfacial layer and the gate dielectric layer are disposed between the sidewalls of the fin structure and the gate structure.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chi Pan, Ying-Liang Chuang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11887896
    Abstract: Semiconductor devices and methods which utilize a treatment process of a bottom anti-reflective layer are provided. The treatment process may be a physical treatment process in which material is added in order to fill holes and pores within the material of the bottom anti-reflective layer or else the treatment process may be a chemical treatment process in which a chemical reaction is used to form a protective layer. By treating the bottom anti-reflective layer the diffusion of subsequently applied chemicals is reduced or eliminated, thereby helping to prevent defects that arise from such diffusion.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: January 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yao-Wen Hsu, Ming-Chi Huang, Ying-Liang Chuang
  • Publication number: 20230420265
    Abstract: Disclosed is a method comprising: providing at least two structures with a metal layer over each; forming a patterned photolithographic layer over the metal layer over the first structure; removing the metal layer from the second structure via wet etch operations using a chemical etchant that is resistant to penetration into the photolithographic layer; and achieving, after wet etch operations, a remaining metal ratio of a distance X over a distance Y that is less than 179 and greater than 1, wherein X is the distance from a first line extending from an edge of the metal layer over the first structure to a second line extending from an edge of a channel region in the second structure, and Y is a second distance from the first line to a third line extending from an edge of the metal layer formed over the channel region in the first structure.
    Type: Application
    Filed: June 22, 2022
    Publication date: December 28, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tefu Yeh, Cheng-Chieh Tu, Ming-Chi Huang, Ying-Liang Chuang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11854903
    Abstract: A method includes forming a gate stack, which includes a first portion over a portion of a first semiconductor fin, a second portion over a portion of a second semiconductor fin, and a third portion connecting the first portion to the second portion. An anisotropic etching is performed on the third portion of the gate stack to form an opening between the first portion and the second portion. A footing portion of the third portion remains after the anisotropic etching. The method further includes performing an isotropic etching to remove a metal gate portion of the footing portion, and filling the opening with a dielectric material.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chi Huang, Kuo-Bin Huang, Ying-Liang Chuang, Ming-Hsi Yeh
  • Patent number: 11855098
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Publication number: 20230387233
    Abstract: In a method of manufacturing a semiconductor device, a gate space is formed by removing a sacrificial gate electrode formed over a channel region, a first gate dielectric layer is formed over the channel region in the gate space, a second gate dielectric layer is formed over the first gate dielectric layer, one or more conductive layers is formed on the second gate dielectric layer, the second gate dielectric layer and the one or more conductive layers are recessed, an annealing operation is performed to diffuse an element of the second gate dielectric layer into the first gate dielectric layer, and one or more metal layers are formed in the gate space.
    Type: Application
    Filed: May 24, 2022
    Publication date: November 30, 2023
    Inventors: Yung-Hsiang CHAN, An-Hung TAI, Hui-Chi CHEN, J.F. CHUEH, Yen-Ta LIN, Ming-Chi HUANG, Cheng-Chieh TU, Jian-Hao CHEN, Kuo-Feng YU
  • Publication number: 20230282699
    Abstract: A semiconductor device structure and a manufacturing method thereof are provided. The structure includes a substrate having a first region and a second region, first and second semiconductor channel sheets, first and second gate structure and source and drain regions. The first and second semiconductor channel sheets are disposed over the substrate and respectively in the first region and the second region. The first semiconductor channel sheets have a first channel width shorter than a second channel width of the second semiconductor channel sheets. The first and second gate structures are disposed over and laterally surrounding the first and second semiconductor channel sheets respectively. The first gate structure includes a first gate dielectric layer and a first metallic layer. The second gate structure includes a second gate dielectric layer and a second metallic layer. The source and drain regions are located beside the first and second semiconductor channel sheets.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tefu Yeh, Ming-Chi Huang, Jo-Chun Hung, Ying-Liang Chuang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20230215765
    Abstract: The present disclosure provides a method for fabricating a semiconductor structure, including forming a dielectric layer over a first region and a second region of a substrate, wherein the second region is adjacent to the first region, increasing a thickness of the dielectric layer in the first region, including forming an oxygen capturing layer over the dielectric layer in the first region, including forming the oxygen capturing layer over the first region and the second region, and removing the oxygen capturing layer over the second region with a mask layer, performing an oxidizing operation from a top surface of the oxygen capturing layer to increase oxygen concentration of the oxygen capturing layer, removing the oxygen capturing layer over the first region, and forming a gate structure over the dielectric layer.
    Type: Application
    Filed: February 22, 2023
    Publication date: July 6, 2023
    Inventors: CHIH-NAN LO, MING-CHI HUANG, HSIN-HSIEN LU, MING-HSI YEH, KUO-BIN HUANG
  • Patent number: 11682669
    Abstract: Provided is a metal gate structure and related methods that include performing a metal gate cut process. The metal gate cut process includes a plurality of etching steps. For example, a first anisotropic dry etch is performed, a second isotropic dry etch is performed, and a third wet etch is performed. In some embodiments, the second isotropic etch removes a residual portion of a metal gate layer including a metal containing layer. In some embodiments, the third etch removes a residual portion of a dielectric layer.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: June 20, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chi Huang, Ying-Liang Chuang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20230073400
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Patent number: 11594455
    Abstract: The present disclosure provides a method for fabricating a semiconductor structure, including forming an inter dielectric layer over a first region and a second region of a substrate, wherein the second region is adjacent to the first region, forming a high-k material over the inter dielectric layer in the first region and the second region, forming an oxygen capturing layer over the high-k material in the first region, and applying oxidizing agent over the oxygen capturing layer.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Nan Lo, Ming-Chi Huang, Hsin-Hsien Lu, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11502080
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Publication number: 20220319933
    Abstract: Semiconductor devices and methods which utilize a treatment process of a bottom anti-reflective layer are provided. The treatment process may be a physical treatment process in which material is added in order to fill holes and pores within the material of the bottom anti-reflective layer or else the treatment process may be a chemical treatment process in which a chemical reaction is used to form a protective layer. By treating the bottom anti-reflective layer the diffusion of subsequently applied chemicals is reduced or eliminated, thereby helping to prevent defects that arise from such diffusion.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 6, 2022
    Inventors: Yao-Wen Hsu, Ming-Chi Huang, Ying-Liang Chuang
  • Publication number: 20220216110
    Abstract: The present disclosure provides a method for fabricating a semiconductor structure, including forming an inter dielectric layer over a first region and a second region of a substrate, wherein the second region is adjacent to the first region, forming a high-k material over the inter dielectric layer in the first region and the second region, forming an oxygen capturing layer over the high-k material in the first region, and applying oxidizing agent over the oxygen capturing layer.
    Type: Application
    Filed: January 5, 2021
    Publication date: July 7, 2022
    Inventors: CHIH-NAN LO, MING-CHI HUANG, HSIN-HSIEN LU, MING-HSI YEH, KUO-BIN HUANG
  • Patent number: 11362006
    Abstract: Semiconductor devices and methods which utilize a treatment process of a bottom anti-reflective layer are provided. The treatment process may be a physical treatment process in which material is added in order to fill holes and pores within the material of the bottom anti-reflective layer or else the treatment process may be a chemical treatment process in which a chemical reaction is used to form a protective layer. By treating the bottom anti-reflective layer the diffusion of subsequently applied chemicals is reduced or eliminated, thereby helping to prevent defects that arise from such diffusion.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: June 14, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yao-Wen Hsu, Ming-Chi Huang, Ying-Liang Chuang
  • Publication number: 20220173226
    Abstract: Methods for, and structures formed by, wet process assisted approaches implemented in a replacement gate process are provided. Generally, in some examples, a wet etch process for removing a capping layer can form a first monolayer on the underlying layer as an adhesion layer and a second monolayer on, e.g., an interfacial dielectric layer between a gate spacer and a fin as an etch protection mechanism. Generally, in some examples, a wet process can form a monolayer on a metal layer, like a barrier layer of a work function tuning layer, as a hardmask for patterning of the metal layer.
    Type: Application
    Filed: February 21, 2022
    Publication date: June 2, 2022
    Inventors: Ju-Li Huang, Chun-Sheng Liang, Ming-Chi Huang, Ming-Hsi Yeh, Ying-Liang Chuang, Hsin-Che Chiang
  • Patent number: 11257924
    Abstract: Methods for, and structures formed by, wet process assisted approaches implemented in a replacement gate process are provided. Generally, in some examples, a wet etch process for removing a capping layer can form a first monolayer on the underlying layer as an adhesion layer and a second monolayer on, e.g., an interfacial dielectric layer between a gate spacer and a fin as an etch protection mechanism. Generally, in some examples, a wet process can form a monolayer on a metal layer, like a barrier layer of a work function tuning layer, as a hardmask for patterning of the metal layer.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ju-Li Huang, Chun-Sheng Liang, Ming-Chi Huang, Ming-Hsi Yeh, Ying-Liang Chuang, Hsin-Che Chiang
  • Patent number: 11239328
    Abstract: A transistor includes a silicon germanium layer, a gate stack, and source and drain features. The silicon germanium layer has a channel region. The silicon germanium layer has a first silicon-to-germanium ratio. The gate stack is disposed over the channel region of the silicon germanium layer and includes a silicon germanium oxide layer over and in contact with the channel region of the silicon germanium layer, a high-? dielectric layer over the silicon germanium oxide layer, and a gate electrode over the high-? dielectric layer. The silicon germanium oxide layer has a second silicon-to-germanium ratio, and the second silicon-to-germanium ratio is substantially the same as the first silicon-to-germanium ratio.
    Type: Grant
    Filed: July 11, 2020
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Sheng Chuang, You-Hua Chou, Ming-Chi Huang