Patents by Inventor Ming-Chi Wu

Ming-Chi Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942285
    Abstract: An electronic device has a keyboard with an internal membrane. The membrane has a set of strain gauges configured to respond to a key press, such as when a collapsible dome collapses into contact with the membrane. The strain gauges are connected in a half Wheatstone bridge configuration and are positioned on the membrane in order to limit effects of temperature and subtle flexure of the membrane. The strain gauges are also configured to magnify detection of a resistance differential when a keycap is pressed with sufficient force.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: March 26, 2024
    Assignee: APPLE INC.
    Inventors: Chia Chi Wu, Michael Vosgueritchian, Ming Gao, Nan Chen, Vyom Sharma, Wenhao Wang
  • Publication number: 20240098125
    Abstract: The present disclosure relates to a system, a method and a computer-readable medium for rendering a streaming on a user terminal. The method includes rendering the streaming in a first mode, receiving an environment parameter of the user terminal, receiving a timing when the user terminal closes the streaming, determining a threshold value of the environment parameter based on the timing the user terminal closes the streaming, receiving an updated environment parameter of the user terminal, and rendering the streaming in a second mode if the updated environment parameter meets the threshold value. The second mode includes fewer data objects than the first mode or includes a downgraded version of a data object in the first mode for the rendering. The present disclosure can customize the rendering mode for each user and maximize the satisfaction of viewing streaming for each user.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Yung-Chi HSU, Chung-Chiang HSU, Shao-Yuan WU, Ming-Che CHENG, Ka Chon LOI
  • Publication number: 20240087057
    Abstract: A power consumption monitoring device includes a sensor, a storage, and a processor. The sensor is configured to detect a power-consuming device quantity and a power consumption amount. The storage is configured to store the power-consuming device quantity and the power consumption amount. The processor is communicatively connected to the sensor and the storage. The processor is configured to calculate a power-consuming device idling indicator based on the power-consuming device quantity and the power consumption amount in a monitoring time interval, wherein the power-consuming device idling indicator is used for indicating a deviation status of the power-consuming device quantity and the power consumption amount. The processor is further configured to determine whether the power-consuming device idling indicator exceeds a warning threshold. In response to the power-consuming device idling indicator exceeding the warning threshold, the processor is further configured to generate a warning message.
    Type: Application
    Filed: December 20, 2022
    Publication date: March 14, 2024
    Inventors: Wei-Chao CHEN, Ming-Chi CHANG, Chih-Pin WEI, Ke-Li WU, Hua-Hsiu CHIANG, Yu-Lun CHANG
  • Publication number: 20230387150
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 30, 2023
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Patent number: 11830892
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Publication number: 20220278159
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a front surface, a back surface opposite to the front surface, and a light-sensing region close to the front surface. The image sensor device includes an insulating layer covering the back surface and extending into the semiconductor substrate. The protection layer has a first refractive index, and the first refractive index is less than a second refractive index of the semiconductor substrate and greater than a third refractive index of the insulating layer, and the protection layer conformally and continuously covers the back surface and extends into the semiconductor substrate. The image sensor device includes a reflective structure surrounded by insulating layer in the semiconductor substrate.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh FANG, Ming-Chi WU, Ji-Heng JIANG, Chi-Yuan WEN, Chien-Nan TU, Yu-Lung YEH, Shih-Shiung CHEN, Kun-Yu LIN
  • Publication number: 20220238572
    Abstract: A method includes etching a semiconductor substrate to form a trench, filling a dielectric layer into the trench, with a void being formed in the trench and between opposite portions of the dielectric layer, etching the dielectric layer to reveal the void, forming a diffusion barrier layer on the dielectric layer, and forming a high-reflectivity metal layer on the diffusion barrier layer. The high-reflectivity metal layer has a portion extending into the trench. A remaining portion of the void is enclosed by the high-reflectivity metal layer.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Ming-Chi Wu, Chun-Chieh Fang, Bo-Chang Su, Chien Nan Tu, Yu-Lung Yeh, Kun-Yu Lin, Shih-Shiung Chen
  • Patent number: 11393937
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Publication number: 20220199459
    Abstract: An LDMOS device comprises a well region, first and second implant regions, a gate electrode, first and second source/drain regions, a first STI region, and a first DTI region. The well region is in a substrate and of a first conductivity type. The first implant region is in the substrate and of a second conductivity type. The second implant region is in the well region and of the first conductivity type. The gate electrode extends from above the well region to above the first implant region. The first and second source/drain regions are respectively in the first and second implant regions. The first STI region laterally extends from the second implant region to directly below the gate electrode. The first DTI region extends downwards from a bottom surface of the first STI region into the well region. The first DTI region vertically overlaps with the gate electrode.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh FANG, Chien-Chang HUANG, Chi-Yuan WEN, Jian WU, Ming-Chi WU, Jung-Yu CHENG, Shih-Shiung CHEN, Wei-Tung HUANG, Yu-Lung YEH
  • Patent number: 11342372
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a first side, a second side opposite to the first side, and at least one light-sensing region close to the first side. The image sensor device includes a dielectric feature covering the second side and extending into the semiconductor substrate. The dielectric feature in the semiconductor substrate surrounds the light-sensing region. The image sensor device includes a reflective layer in the dielectric feature in the semiconductor substrate, wherein a top portion of the reflective layer protrudes away from the second side, and a top surface of the reflective layer and a top surface of the insulating layer are substantially coplanar.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Fang, Ming-Chi Wu, Ji-Heng Jiang, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh, Shih-Shiung Chen, Kun-Yu Lin
  • Patent number: 11302734
    Abstract: A method includes etching a semiconductor substrate to form a trench, filling a dielectric layer into the trench, with a void being formed in the trench and between opposite portions of the dielectric layer, etching the dielectric layer to reveal the void, forming a diffusion barrier layer on the dielectric layer, and forming a high-reflectivity metal layer on the diffusion barrier layer. The high-reflectivity metal layer has a portion extending into the trench. A remaining portion of the void is enclosed by the high-reflectivity metal layer.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chi Wu, Chun-Chieh Fang, Bo-Chang Su, Chien Nan Tu, Yu-Lung Yeh, Kun-Yu Lin, Shih-Shiung Chen
  • Publication number: 20210119064
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Publication number: 20210091125
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 25, 2021
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Patent number: 10879406
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Patent number: 10868053
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Patent number: 10861989
    Abstract: An image sensor with an absorption enhancement semiconductor layer is provided. In some embodiments, the image sensor comprises a front-side semiconductor layer, an absorption enhancement semiconductor layer, and a back-side semiconductor layer that are stacked. The absorption enhancement semiconductor layer is stacked between the front-side and back-side semiconductor layers. The absorption enhancement semiconductor layer has an energy bandgap less than that of the front-side semiconductor layer. Further, the image sensor comprises a plurality of protrusions and a photodetector. The protrusions are defined by the back-side semiconductor layer, and the photodetector is defined by the front-side semiconductor layer, the absorption enhancement semiconductor layer, and the back-side semiconductor layer.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chi Wu, Chien Nan Tu, Kun-Yu Lin, Shih-Shiung Chen
  • Patent number: 10861988
    Abstract: An image sensor with an absorption enhancement semiconductor layer is provided. In some embodiments, the image sensor comprises a front-side semiconductor layer, an absorption enhancement semiconductor layer, and a back-side semiconductor layer that are stacked. The absorption enhancement semiconductor layer is stacked between the front-side and back-side semiconductor layers. The absorption enhancement semiconductor layer has an energy bandgap less than that of the front-side semiconductor layer. Further, the image sensor comprises a plurality of protrusions and a photodetector. The protrusions are defined by the back-side semiconductor layer, and the photodetector is defined by the front-side semiconductor layer, the absorption enhancement semiconductor layer, and the back-side semiconductor layer.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chi Wu, Chien Nan Tu, Kun-Yu Lin, Shih-Shiung Chen
  • Publication number: 20200343289
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate having a first side, a second side opposite to the first side, and at least one light-sensing region close to the first side. The image sensor device includes a dielectric feature covering the second side and extending into the semiconductor substrate. The dielectric feature in the semiconductor substrate surrounds the light-sensing region. The image sensor device includes a reflective layer in the dielectric feature in the semiconductor substrate, wherein a top portion of the reflective layer protrudes away from the second side, and a top surface of the reflective layer and a top surface of the insulating layer are substantially coplanar.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh FANG, Ming-Chi WU, Ji-Heng JIANG, Chi-Yuan WEN, Chien-Nan TU, Yu-Lung YEH, Shih-Shiung CHEN, Kun-Yu LIN
  • Patent number: 10784150
    Abstract: A semiconductor structure includes a semiconductive substrate including a first surface and a second surface opposite to the first surface, a shallow trench isolation (STI) including a first portion at least partially disposed within the semiconductive substrate and tapered from the first surface towards the second surface, and a second portion disposed inside the semiconductive substrate, coupled with the first portion and extended from the first portion towards the second surface, and a void enclosed by the STI, wherein the void is at least partially disposed within the second portion of the STI.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: September 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ching-Chung Su, Jiech-Fun Lu, Jian Wu, Che-Hsiang Hsueh, Ming-Chi Wu, Chi-Yuan Wen, Chun-Chieh Fang, Yu-Lung Yeh
  • Patent number: 10734427
    Abstract: A method for forming an image sensor device is provided. The method includes providing a semiconductor substrate including a front surface, a back surface opposite to the front surface, at least one light-sensing region close to the front surface, and a first trench surrounding the light-sensing region. The method includes forming an insulating layer over the back surface and in the first trench. A void is formed in the insulating layer in the first trench, and the void is closed. The method includes removing the insulating layer over the void to open up the void. The opened void forms a second trench partially in the first trench. The method includes filling a reflective structure in the second trench. The reflective structure has a light reflectivity ranging from about 70% to about 100%.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh Fang, Ming-Chi Wu, Ji-Heng Jiang, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh, Shih-Shiung Chen, Kun-Yu Lin