Patents by Inventor Ming Chiang A WU

Ming Chiang A WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220317381
    Abstract: A large-scale single-photonics-based optical switching system that occupies an area larger than the maximum area of a standard step-and-repeat lithography reticle is disclosed. The system includes a plurality of identical switch blocks, each of is formed in a different reticle field that no larger than the maximum reticle size. Bus waveguides of laterally adjacent switch blocks are stitched together at lateral interfaces that include a second arrangement of waveguide ports that is common to all lateral interfaces. Bus waveguides of vertically adjacent switch blocks are stitched together at vertical interfaces that include a first arrangement of waveguide ports that is common to all vertical interfaces. In some embodiments, the lateral and vertical interfaces include waveguide ports having waveguide coupling regions that are configured to mitigate optical loss due to stitching error.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 6, 2022
    Inventors: Tae Joon SEOK, Ming Chiang A WU
  • Patent number: 11441353
    Abstract: An integrated-optics MEMS-actuated beam-steering system is disclosed, wherein the beam-steering system includes a lens and a programmable vertical coupler array having a switching network and an array of vertical couplers, where the switching network can energize of the vertical couplers such that it efficiently emits the light into free-space. The lens collimates the light received from the energized vertical coupler and directs the output beam along a propagation direction determined by the position of the energized vertical coupler within the vertical-coupler array. In some embodiments, the vertical coupler is configured to correct an aberration of the lens. In some embodiments, more than one vertical coupler can be energized to enable steering of multiple output beams. In some embodiments, the switching network is non-blocking.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: September 13, 2022
    Assignee: The Regents of the University of California
    Inventors: Xiaosheng Zhang, Ming Chiang A Wu, Andrew S Michaels, Johannes Henriksson
  • Patent number: 11360272
    Abstract: A large-scale single-photonics-based optical switching system that occupies an area larger than the maximum area of a standard step-and-repeat lithography reticle is disclosed. The system includes a plurality of identical switch blocks, each of is formed in a different reticle field that no larger than the maximum reticle size. Bus waveguides of laterally adjacent switch blocks are stitched together at lateral interfaces that include a second arrangement of waveguide ports that is common to all lateral interfaces. Bus waveguides of vertically adjacent switch blocks are stitched together at vertical interfaces that include a first arrangement of waveguide ports that is common to all vertical interfaces. In some embodiments, the lateral and vertical interfaces include waveguide ports having waveguide coupling regions that are configured to mitigate optical loss due to stitching error.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 14, 2022
    Assignee: The Regents of the University of California
    Inventors: Tae Joon Seok, Ming Chiang A Wu
  • Publication number: 20210191046
    Abstract: A large-scale single-photonics-based optical switching system that occupies an area larger than the maximum area of a standard step-and-repeat lithography reticle is disclosed. The system includes a plurality of identical switch blocks, each of is formed in a different reticle field that no larger than the maximum reticle size. Bus waveguides of laterally adjacent switch blocks are stitched together at lateral interfaces that include a second arrangement of waveguide ports that is common to all lateral interfaces. Bus waveguides of vertically adjacent switch blocks are stitched together at vertical interfaces that include a first arrangement of waveguide ports that is common to all vertical interfaces. In some embodiments, the lateral and vertical interfaces include waveguide ports having waveguide coupling regions that are configured to mitigate optical loss due to stitching error.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 24, 2021
    Inventors: Tae Joon SEOK, Ming Chiang A WU
  • Patent number: 11002953
    Abstract: A spatial light modulator (SLM) is disclosed, wherein the SLM has a substrate comprising an array of MEMS-based mirror elements that is periodic with small pitch (<3 microns) and high fill factor (>80%) in a first dimension. Each mirror element includes a micromirror whose height above the substrate is controlled via a vertical comb-drive actuator, which is located completely beneath the micromirror in the first dimension. As a result, mirror element can control the phase of light reflected from its micromirror. In some embodiments, the SLM includes an array of mirror elements that is periodic with small pitch and high fill factor in two dimensions. In such embodiments, the actuator, as well as tethers for supporting the micromirror above the substrate, are located completely beneath the micromirror, thereby enabling high fill factor in both dimensions.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: May 11, 2021
    Assignee: The Regents of the University of California
    Inventors: Youmin Wang, Ming Chiang A Wu
  • Publication number: 20210116778
    Abstract: An integrated-optics MEMS-actuated beam-steering system is disclosed, wherein the beam-steering system includes a lens and a programmable vertical coupler array having a switching network and an array of vertical couplers, where the switching network can energize of the vertical couplers such that it efficiently emits the light into free-space. The lens collimates the light received from the energized vertical coupler and directs the output beam along a propagation direction determined by the position of the energized vertical coupler within the vertical-coupler array. In some embodiments, the vertical coupler is configured to correct an aberration of the lens. In some embodiments, more than one vertical coupler can be energized to enable steering of multiple output beams. In some embodiments, the switching network is non-blocking.
    Type: Application
    Filed: June 19, 2019
    Publication date: April 22, 2021
    Inventors: Xiaosheng ZHANG, Ming Chiang A WU, Andrew S MICHAELS, Johannes HENRIKSSON
  • Patent number: 10715887
    Abstract: A polarization-independent optical switching system capable of rerouting light signals is disclosed. The system includes a plurality of switching cells, each including a pair of bus waveguides that are formed in different planes above a substrate. Each bus waveguide supports low-loss propagation of both the TE- and TM-polarization modes and are optically decoupled when the switch is in an unswitched state. In its switched state, a shunt waveguide that also supports low-loss propagation of both polarization modes is moved into proximity with both bus waveguides to form a pair of adiabatic directional couplers that enable the light signal to evanescently couple between each bus waveguide and the shunt waveguide. As a result, the path of a light signal through the switching cell is reconfigured.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: July 14, 2020
    Assignee: The Regents of the University of California
    Inventors: Tae Joon Seok, Sangyoon Han, Ming Chiang A Wu
  • Patent number: 10569271
    Abstract: Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: February 25, 2020
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BERKELEY LIGHTS, INC.
    Inventors: Ming-Chiang Wu, Jodi Tsu-An Loo, Shao Ning Pei, Gaetan L. Mathieu, Jian Gong, Randall D. Lowe, Jr., Justin K. Valley
  • Publication number: 20190353893
    Abstract: A MEMS-based optical phased array (OPA) having small pitch, high fill factor, and large field of view is presented. The OPA includes a plurality of diffractive elements, each of which diffracts incident light into its diffractive orders to produce at least one beamlet. Each diffractive element is operatively coupled with an actuator that is operative for moving the diffractive element along its longitudinal direction to control the phase of its respective beamlet. The beamlets from all of the diffractive elements are combined to define at least one output beam and steer that output beam in at least one dimension.
    Type: Application
    Filed: January 15, 2018
    Publication date: November 21, 2019
    Inventors: Ming Chiang A WU, Guangya ZHOU, Youmin WANG
  • Publication number: 20190310461
    Abstract: A spatial light modulator (SLM) is disclosed, wherein the SLM has a substrate comprising an array of MEMS-based mirror elements that is periodic with small pitch (<3 microns) and high fill factor (>80%) in a first dimension. Each mirror element includes a micromirror whose height above the substrate is controlled via a vertical comb-drive actuator, which is located completely beneath the micromirror in the first dimension. As a result, mirror element can control the phase of light reflected from its micromirror. In some embodiments, the SLM includes an array of mirror elements that is periodic with small pitch and high fill factor in two dimensions. In such embodiments, the actuator, as well as tethers for supporting the micromirror above the substrate, are located completely beneath the micromirror, thereby enabling high fill factor in both dimensions.
    Type: Application
    Filed: June 20, 2017
    Publication date: October 10, 2019
    Inventors: Youmin WANG, Ming Chiang A WU
  • Publication number: 20190253775
    Abstract: A polarization-independent optical switching system capable of rerouting light signals is disclosed. The system includes a plurality of switching cells, each including a pair of bus waveguides that are formed in different planes above a substrate. Each bus waveguide supports low-loss propagation of both the TE- and TM-polarization modes and are optically decoupled when the switch is in an unswitched state. In its switched state, a shunt waveguide that also supports low-loss propagation of both polarization modes is moved into proximity with both bus waveguides to form a pair of adiabatic directional couplers that enable the light signal to evanescently couple between each bus waveguide and the shunt waveguide. As a result, the path of a light signal through the switching cell is reconfigured.
    Type: Application
    Filed: September 11, 2017
    Publication date: August 15, 2019
    Inventors: Tae Joon SEOK, Sangyoon HAN, Ming Chiang A WU
  • Publication number: 20180099275
    Abstract: Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.
    Type: Application
    Filed: October 17, 2017
    Publication date: April 12, 2018
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BERKELEY LIGHTS, INC.
    Inventors: Ming-Chiang Wu, Jodi Tsu-An Loo, Shao Ning Pei, Gaetan L. Mathieu, Jian Gong, Randall D. Lowe, JR., Justin K. Valley
  • Patent number: 9815056
    Abstract: Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: November 14, 2017
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BERKELEY LIGHTS, INC.
    Inventors: Ming-Chiang Wu, Jodi Tsu-An Loo, Shao Ning Pei, Gaetan L. Mathieu, Jian Gong, Randall D. Lowe, Jr., Justin K. Valley
  • Publication number: 20160158748
    Abstract: Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 9, 2016
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BERKELEY LIGHTS, INC.
    Inventors: Ming-Chiang Wu, Jodi Tsu-An Loo, Shao Ning Pei, Gaetan L. Mathieu, Jian Gong, Randall D. Lowe, JR., Justin K. Valley
  • Patent number: 7956339
    Abstract: Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: June 7, 2011
    Assignee: The Regents of the University of California
    Inventors: Aaron Ohta, Pei-Yu Chiou, Hsan-Yin Hsu, Arash Jamshidi, Ming-Chiang Wu, Steven L. Neale
  • Publication number: 20100101960
    Abstract: Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 29, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aaron Ohta, Pei-Yu Chiou, Hsan-Yin Hsu, Arash Jamshidi, Ming-Chiang Wu, Steven L. Neale
  • Patent number: 7612355
    Abstract: An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 ?m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or groups of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: November 3, 2009
    Assignee: The Regents of the University of California
    Inventors: Ming Chiang Wu, Pei Yu Chiou, Aaron T. Ohta
  • Publication number: 20090170186
    Abstract: An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 ?m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or groups of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.
    Type: Application
    Filed: April 12, 2005
    Publication date: July 2, 2009
    Inventors: Ming Chiang Wu, Pei Yu Chiou, Aaron T. Ohta
  • Patent number: 7373037
    Abstract: A system and method of optically routing wavelength channels from within a plurality of optical inputs to any of a plurality of optical outputs. An optical wavelength-selective cross connect (WSXC) switch is described with a first stage of wavelength division multiplexing (WDM) routers which support an optical input and a plurality of optical outputs, which are interconnected to a second stage of WDM routers having a plurality of optical inputs and an optical output. The wavelength channel is routed in two stages from one of the input stage routers to an output stage router for output. It should be appreciated that the WSXC switch of the invention can be utilized for passing optical signals in either direction. In a preferred implementation integrated circuit router chips are stacked into cubes to form the routers stages which are cross coupled using a twisted butt joint to form a WSXC switch.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: May 13, 2008
    Assignee: The Regents of the University of California
    Inventor: Ming-Chiang Wu
  • Patent number: RE44711
    Abstract: An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 ?m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: January 21, 2014
    Assignee: The Regents of the University of California
    Inventors: Ming Chiang Wu, Pei-Yu Chiou, Aaron T. Ohta