Patents by Inventor Ming-Chih Ho

Ming-Chih Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128874
    Abstract: An efficiency tracking method of a controller applied to a flyback power converter includes before the controller soft starts, an original frequency variation curve setting voltage generated by the controller outputting an original frequency variation curve setting detection current to an original frequency variation curve setting detection resistor determining a frequency variation curve of the flyback power converter, and utilizing adjustment of resistance of the original frequency variation curve setting detection resistor to achieve efficiency optimization. Therefore, the controller controls an output voltage of the flyback power converter and tracks a maximum power point of the flyback power converter according to the efficiency tracking method to achieve efficiency optimization.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 18, 2024
    Applicant: Leadtrend Technology Corp.
    Inventors: Ming-Chang Tsou, Cheng-Tsung Ho, Yuan-Chih Lan
  • Patent number: 11920020
    Abstract: A composite material including a nanocellulose core and a metal shell is provided. The metal shell covers a surface of the nanocellulose core. The composite material is nanosized and has high mechanical strength. Additionally, a method of manufacturing the composite material is also provided.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: March 5, 2024
    Assignee: Winbond Electronics Corp.
    Inventors: Ming-Chih Tsai, Yu-Hsuan Ho
  • Patent number: 11541551
    Abstract: A robotic arm comprising an operation end, a base, a sensor unit and a control unit is provided. The operation end is connected to the base, and the operation end is configured to reach an operational area. The sensor unit provides a sensor signal according to the force applied by or the motion of an operator. When the operation end reaches the operational area, the control unit sets a fixed position on the robotic arm between the base and the operation end. When the sensor signal from the operator fulfills a default condition, the control unit moves the robotic arm away from the operator, without moving the fixed position on the robotic arm.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: January 3, 2023
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jia-Yush Yen, You-Ting Liao, Ching-Yuan Chen, Yen-Han Wang, Yung-Yaw Chen, Ming-Chih Ho
  • Publication number: 20200039085
    Abstract: A robotic arm comprising an operation end, a base, a sensor unit and a control unit is provided. The operation end is connected to the base, and the operation end is configured to reach an operational area. The sensor unit provides a sensor signal according to the force applied by or the motion of an operator. When the operation end reaches the operational area, the control unit sets a fixed position on the robotic arm between the base and the operation end. When the sensor signal from the operator fulfills a default condition, the control unit moves the robotic arm away from the operator, without moving the fixed position on the robotic arm.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 6, 2020
    Inventors: Jia-Yush Yen, You-Ting Liao, Ching-Yuan Chen, Yen-Han Wang, Yung-Yaw Chen, Ming-Chih Ho
  • Patent number: 9675423
    Abstract: An ultrasound energy barrier for avoiding energy accumulation in a to-be-protected region during tumor treatment has a barrier element and a positioning element. The barrier element is attached to a body surface of an animal outside a to-be-protected region and a to-be-treated tumor in turn, the barrier element has an outline matched with the to-be-protected region to thus shield the to-be-protected region, so as to avoid energy accumulation in the to-be-protected region during an ultrasound focusing treatment of the to-be-treated tumor. The positioning element positioning the barrier element on the body surface during the ultrasound focusing treatment.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: June 13, 2017
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jia-yush Yen, Yu-tin Chao, Ya-lin Yu, Che-jung Hsu, Yung-yaw Chen, Ming-chih Ho
  • Patent number: 9412167
    Abstract: The present invention provides an acceleration and enhancement methods for ultrasound scatterer structure visualization. The method includes: obtaining an ultrasonic image, calculating all values of the ultrasonic signal points in each mth window centered at a nth signal point to obtain a plurality of original statistical values anxm, obtaining a plurality of mth statistical values by averaging value of original statistical values in the same window, calculating a plurality of mth weighting values based on the statistical values by different weighting formulas, multiplying each weighting value with the original statistical values corresponding to the various size of windows, summing up to obtain an ultrasound structure scatterer value of the nth ultrasonic signal point, and generating an ultrasound scatterer structure image based on a matrix of the ultrasound scatterer values. The present invention further combined interpolation method can reduce the computation time and retain the 80% accuracy.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: August 9, 2016
    Assignee: AMCAD BIOMED CORPORATION
    Inventors: Po-Hsiang Tsui, Ming-Chih Ho, Chiung-Nein Chen, Argon Chen, Jia-Jiun Chen, Yu-Hsin Wang, Kuo-Chen Huang
  • Publication number: 20160133020
    Abstract: The present invention provides an acceleration and enhancement methods for ultrasound scatterer structure visualization. The method includes: obtaining an ultrasonic image, calculating all values of the ultrasonic signal points in each mth window centered at a nth signal point to obtain a plurality of original statistical values anxm, obtaining a plurality of mth statistical values by averaging value of original statistical values in the same window, calculating a plurality of mth weighting values based on the statistical values by different weighting formulas, multiplying each weighting value with the original statistical values corresponding to the various size of windows, summing up to obtain an ultrasound structure scatterer value of the nth ultrasonic signal point, and generating an ultrasound scatterer structure image based on a matrix of the ultrasound scatterer values. The present invention further combined interpolation method can reduce the computation time and retain the 80% accuracy.
    Type: Application
    Filed: May 5, 2015
    Publication date: May 12, 2016
    Inventors: Po-Hsiang Tsui, Ming-Chih Ho, Chiung-Nein Chen, Argon Chen, Jia-Jiun Chen, Yu-Hsin Wang, Kuo-Chen Huang
  • Publication number: 20150148671
    Abstract: A non-invasive liver fibrosis evaluation device and a method thereof are related. The device comprises an ultrasound unit, a Nakagami parameter generation unit, a hardness value generation unit, a data base, and a determination unit. The method comprises steps of: scanning the external body part corresponding to the liver by a transducer of the ultrasound unit to produce plural ultrasound image data sets; analyzing one ultrasound image data set with the Nakagami distribution to produce a Nakagami parameter by using the. Nakagami parameter generation unit; analyzing plural ultrasound image data sets to produce a hardness value by using the hardness value generation unit; and evaluating the liver fibrosis by comparing the Nakagami parameter and the hardness value with plural reference parameter sets stored in the data base by using the determination unit.
    Type: Application
    Filed: February 19, 2014
    Publication date: May 28, 2015
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Chiung-Nien CHEN, Ming-Chih HO, King-Jen CHANG, Po-Hsiang TSUI, Yu-Chen SHU
  • Patent number: 8948474
    Abstract: A quantification method and an imaging method are disclosed, capable of quantifying the margin feature, the cysts feature, the calcifications feature, the echoic feature and the heterogenesis feature of a tumor, and capable of imaging the margin feature, the cysts feature, the calcifications feature and the heterogenesis feature of a tumor. The quantification method and the imaging method calculate the moving variance of the gray scale of each of the pixel points based on the gradient value of the gray scale of these pixel points. Then, depending on the purpose of the quantification method or the imaging method, the maximum value, the minimum value, the mean value, and the standard deviation of the moving variance of the gray scale of these pixel points are calculated, respectively. At final, with the definition of the threshold value and the imaging rule, the above features of the tumor are quantified or imaged.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: February 3, 2015
    Assignee: Amcad BioMed Corporation
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Po Wei Tsai, Chung Wei Liu, Hsin-Jung Wu
  • Publication number: 20140364776
    Abstract: An ultrasound energy barrier for avoiding energy accumulation in a to-be-protected region during tumor treatment has a barrier element and a positioning element. The barrier element is attached to a body surface of an animal outside a to-be-protected region and a to-be-treated tumor in turn, the barrier element has an outline matched with the to-be-protected region to thus shield the to-be-protected region, so as to avoid energy accumulation in the to-be-protected region during an ultrasound focusing treatment of the to-be-treated tumor. The positioning element positioning the barrier element on the body surface during the ultrasound focusing treatment.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventors: Jia-yush Yen, Yu-tin Chao, Ya-lin Yu, Che-jung Hsu, Yung-yaw Chen, Ming-chih Ho
  • Patent number: 8572006
    Abstract: The present invention relates to a method for multi-layer classifier applying on a computer readable medium for classifying multiple image samples. The method at least comprising the following steps: (a) receiving a plurality of samples; (b) providing a plurality of attributes, and evaluating a significance of the attributes by a selection criterion; (c) selecting at least one cut-point to establish a discriminant analysis model; (d) proceeding a step of evaluating a performance of the discriminant analysis model by adding the attributes to the discriminant analysis model; and (e) providing a stop criterion. The present invention also provides a computer readable medium for classifying multiple image samples by using the method for multi-layer classifier.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 29, 2013
    Assignee: AmCad BioMed Corporation
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Hsin-Jung Wu
  • Patent number: 8374892
    Abstract: The present invention related to a method for retrieving a tumor contour of an image processing system that includes a memory storing a grayscale image and a processor, comprising: receiving an input tumor contour of the grayscale image; defining a tumor contour annular region and a plurality of reference segments of the grayscale image, wherein the input tumor contour is in the tumor contour annular region, and each of the plurality of reference segments is across the tumor contour annular region and includes a plurality of measured points; retrieving a tumor contour suggestion point on each of the plurality of reference segments; and linking all the tumor contour suggestion points on all of the reference segments, for forming the tumor contour. Accordingly, by applying the method of the present invention, a doctor can rapidly and accurately identify the contour of a tumor in a grayscale image.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: February 12, 2013
    Assignee: AmCad BioMed Corporation
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Po Wei Tsai
  • Publication number: 20110182489
    Abstract: The present invention related to a method for retrieving a tumor contour of an image processing system that includes a memory storing a grayscale image and a processor, comprising: receiving an input tumor contour of the grayscale image; defining a tumor contour annular region and a plurality of reference segments of the grayscale image, wherein the input tumor contour is in the tumor contour annular region, and each of the plurality of reference segments is across the tumor contour annular region and includes a plurality of measured points; retrieving a tumor contour suggestion point on each of the plurality of reference segments; and linking all the tumor contour suggestion points on all of the reference segments, for forming the tumor contour. Accordingly, by applying the method of the present invention, a doctor can rapidly and accurately identify the contour of a tumor in a grayscale image.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Po Wei Tsai
  • Publication number: 20110182522
    Abstract: The present invention relates to a method for multi-layer classifier applying on a computer readable medium for classifying multiple image samples. The method at least comprising the following steps: (a) receiving a plurality of samples; (b) providing a plurality of attributes, and evaluating a significance of the attributes by a selection criterion; (c) selecting at least one cut-point to establish a discriminant analysis model; (d) proceeding a step of evaluating a performance of the discriminant analysis model by adding the attributes to the discriminant analysis model; and (e) providing a stop criterion. The present invention also provides a computer readable medium for classifying multiple image samples by using the method for multi-layer classifier.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Hsin-Jung Wu
  • Publication number: 20110181614
    Abstract: A quantification method and an imaging method are disclosed, capable of quantifying the margin feature, the cysts feature, the calcifications feature, the echoic feature and the heterogenesis feature of a tumor, and capable of imaging the margin feature, the cysts feature, the calcifications feature and the heterogenesis feature of a tumor. The quantification method and the imaging method calculate the moving variance of the gray scale of each of the pixel points based on the gradient value of the gray scale of these pixel points. Then, depending on the purpose of the quantification method or the imaging method, the maximum value, the minimum value, the mean value, and the standard deviation of the moving variance of the gray scale of these pixel points are calculated, respectively. At final, with the definition of the threshold value and the imaging rule, the above features of the tumor are quantified or imaged.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Po Wei Tsai, Chung Wei Liu, Hsin-Jung Wu
  • Patent number: 7955263
    Abstract: A non-invasive positioning system for determining the focus location of a HIFU device comprises a diagnostic ultrasound and the HIFU for ablating and removing tumor tissue. The imaging plane of the diagnostic ultrasound probe and the geometrical axis of a probe of the HIFU define an inclining angle during operation. When the imaging plane of the diagnostic ultrasound intersected to the focus of the HIFU transducer, a maximal convergent interference signals was obtained, so as to position the HIFU focus within tumors for precise ablation.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: June 7, 2011
    Assignee: National Taiwan University
    Inventors: Chiung-Nien Chen, Po-Huang Lee, Wen-Shiang Chen, Ming-Chih Ho, Chih-Ching Wu
  • Publication number: 20090264755
    Abstract: The present invention relates to a precise blood vessel positioning and high-intensity focused ultrasound ablator by use of one ultrasound transducer.
    Type: Application
    Filed: April 22, 2008
    Publication date: October 22, 2009
    Applicant: National Taiwan University
    Inventors: Wen-Shiang Chen, Chih-Ching Wu, Chiung-Nien Chen, Ming-Chih Ho, Po-Huang Lee
  • Publication number: 20070232912
    Abstract: A non-invasive positioning system for determining the focus location of a HIFU device comprises a diagnostic ultrasound and the HIFU for ablating and removing tumor tissue. The imaging plane of the diagnostic ultrasound probe and the geometrical axis of a probe of the HIFU define an inclining angle during operation. When the imaging plane of the diagnostic ultrasound intersected to the focus of the HIFU transducer, a maximal convergent interference signals was obtained, so as to position the HIFU focus within tumors for precise ablation.
    Type: Application
    Filed: February 16, 2007
    Publication date: October 4, 2007
    Inventors: Chiung-Nien Chen, Po-Huang Lee, Wen-Shiang Chen, Ming-Chih Ho, Chih-Ching Wu