Patents by Inventor Ming-Chih Ho

Ming-Chih Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10658036
    Abstract: A forming method of a resistive memory device is provided. The forming method includes: conducting a forming procedure to apply a forming voltage to the resistive memory device such that the resistive memory device changes from a high resistive state to a low resistive state and measuring a first current of the resistive memory device; performing a thermal step on the resistive memory device and measuring a second current of the resistive memory device; and comparing the second current to the first current and determining to apply a first voltage signal or a second voltage signal to the resistive memory device or to finish the forming procedure according to a comparison result of the first current and the second current. In addition, a memory storage apparatus including a resistive memory device is also provided.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: May 19, 2020
    Assignee: Winbond Electronics Corp.
    Inventors: Shao-Ching Liao, Ping-Kun Wang, Ming-Che Lin, Min-Chih Wei, Chia-Hua Ho, Chien-Min Wu
  • Publication number: 20200126915
    Abstract: An embodiment includes a method. The method includes: forming a first conductive line over a substrate; depositing a first dielectric layer over the first conductive line; depositing a second dielectric layer over the first dielectric layer, the second dielectric layer including a different dielectric material than the first dielectric layer; patterning a via opening in the first dielectric layer and the second dielectric layer, where the first dielectric layer is patterned using first etching process parameters, and the second dielectric layer is patterned using the first etching process parameters; patterning a trench opening in the second dielectric layer; depositing a diffusion barrier layer over a bottom and along sidewalls of the via opening, and over a bottom and along sidewalls of the trench opening; and filling the via opening and the trench opening with a conductive material.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Chun-Te Ho, Ming-Chung Liang, Chien-Chih Chiu, Chien-Han Chen
  • Publication number: 20200039085
    Abstract: A robotic arm comprising an operation end, a base, a sensor unit and a control unit is provided. The operation end is connected to the base, and the operation end is configured to reach an operational area. The sensor unit provides a sensor signal according to the force applied by or the motion of an operator. When the operation end reaches the operational area, the control unit sets a fixed position on the robotic arm between the base and the operation end. When the sensor signal from the operator fulfills a default condition, the control unit moves the robotic arm away from the operator, without moving the fixed position on the robotic arm.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 6, 2020
    Inventors: Jia-Yush Yen, You-Ting Liao, Ching-Yuan Chen, Yen-Han Wang, Yung-Yaw Chen, Ming-Chih Ho
  • Patent number: 10527504
    Abstract: A transparent pressure sensor and a manufacturing method thereof are provided. The transparent pressure sensor includes several layers of transparent electrodes, at least one pressure-sensitive deformation layer between the transparent electrodes, and a metal oxide layer. Each layer of the transparent electrodes is composed of nanowires, and the metal oxide layer is disposed in a space among the nanowires.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: January 7, 2020
    Assignee: Winbond Electronics Corp.
    Inventors: Yu-Hsuan Ho, Ming-Chih Tsai, Ming-Hung Hsieh
  • Patent number: 10522468
    Abstract: An embodiment includes a method. The method includes: forming a first conductive line over a substrate; depositing a first dielectric layer over the first conductive line; depositing a second dielectric layer over the first dielectric layer, the second dielectric layer including a different dielectric material than the first dielectric layer; patterning a via opening in the first dielectric layer and the second dielectric layer, where the first dielectric layer is patterned using first etching process parameters, and the second dielectric layer is patterned using the first etching process parameters; patterning a trench opening in the second dielectric layer; depositing a diffusion barrier layer over a bottom and along sidewalls of the via opening, and over a bottom and along sidewalls of the trench opening; and filling the via opening and the trench opening with a conductive material.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Te Ho, Ming-Chung Liang, Chien-Chih Chiu, Chien-Han Chen
  • Patent number: 10473607
    Abstract: A gas sensor includes a first substrate, at least one first electrode, a sensing structure, at least one second electrode, and a second substrate. The at least one first electrode is located on the first substrate. The sensing structure is located on the at least one first electrode and the first substrate, and the sensing structure includes a first semiconductor layer and a second semiconductor layer. The first semiconductor layer having a first conductive type covers the first substrate and the at least one first electrode; the second semiconductor layer having a second conductive type is located on the first semiconductor layer. The at least one second electrode covers the sensing structure. The second substrate covers the at least one second electrode and the sensing structure.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: November 12, 2019
    Assignee: Winbond Electronics Corp.
    Inventors: Ming-Chih Tsai, Yu-Hsuan Ho
  • Patent number: 10453620
    Abstract: A perovskite composite structure is provided. The perovskite composite structure includes a light absorption layer and a sterically-hindered layer disposed in the periphery of the light absorption layer. The light absorption layer includes a perovskite material. The sterically-hindered layer includes a two-dimensional material.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: October 22, 2019
    Assignee: Winbond Electronics Corp.
    Inventors: Ming-Chih Tsai, Yu-Hsuan Ho
  • Patent number: 10401200
    Abstract: A multifunctional sensor including a substrate, a first sensing structure, a dielectric layer and a second sensing structure is provided. The first sensing structure is disposed on the substrate. The dielectric layer is disposed on the first sensing structure. The second sensing structure is disposed on the dielectric layer. The first sensing structure and the second sensing structure are located on the same side of the substrate.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: September 3, 2019
    Assignee: Winbond Electronics Corp.
    Inventors: Ming-Chih Tsai, Yu-Hsuan Ho
  • Patent number: 10323996
    Abstract: A pressure sensor and a manufacturing method thereof are provided. The pressure sensor includes a thin-film transistor (TFT) array and a pressure-sensitive layer covering the TFT array. The pressure-sensitive layer includes a plurality of insulating layers and one of one-directional materials arranged on the same plane and two-directional materials. The insulating layers and the one- or two-directional materials are alternately stacked so as to effectively enhance pressure resolution.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: June 18, 2019
    Assignee: Winbond Electronics Corp.
    Inventors: Yu-Hsuan Ho, Ming-Chih Tsai, Ming-Hung Hsieh
  • Patent number: 10290535
    Abstract: Examples of fabricating an integrated circuit device are disclosed herein. In an embodiment, an integrated circuit workpiece is received that includes a conductive interconnect feature. A first Inter-Level Dielectric (ILD) layer is formed on the conductive interconnect feature, and a second ILD layer is formed on the first ILD layer. A hard mask is formed on the second ILD layer. A via recess is etched extending through the first ILD layer, the second ILD layer and the hard mask to expose the conductive interconnect feature. The etching includes providing a passivation agent that reacts with a material of the hard mask to reduce etchant sensitivity.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 14, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Te Ho, Shih-Yu Chang, Da-Wei Lin, Chien-Chih Chiu, Ming-Chung Liang
  • Patent number: 9675423
    Abstract: An ultrasound energy barrier for avoiding energy accumulation in a to-be-protected region during tumor treatment has a barrier element and a positioning element. The barrier element is attached to a body surface of an animal outside a to-be-protected region and a to-be-treated tumor in turn, the barrier element has an outline matched with the to-be-protected region to thus shield the to-be-protected region, so as to avoid energy accumulation in the to-be-protected region during an ultrasound focusing treatment of the to-be-treated tumor. The positioning element positioning the barrier element on the body surface during the ultrasound focusing treatment.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: June 13, 2017
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jia-yush Yen, Yu-tin Chao, Ya-lin Yu, Che-jung Hsu, Yung-yaw Chen, Ming-chih Ho
  • Patent number: 9412167
    Abstract: The present invention provides an acceleration and enhancement methods for ultrasound scatterer structure visualization. The method includes: obtaining an ultrasonic image, calculating all values of the ultrasonic signal points in each mth window centered at a nth signal point to obtain a plurality of original statistical values anxm, obtaining a plurality of mth statistical values by averaging value of original statistical values in the same window, calculating a plurality of mth weighting values based on the statistical values by different weighting formulas, multiplying each weighting value with the original statistical values corresponding to the various size of windows, summing up to obtain an ultrasound structure scatterer value of the nth ultrasonic signal point, and generating an ultrasound scatterer structure image based on a matrix of the ultrasound scatterer values. The present invention further combined interpolation method can reduce the computation time and retain the 80% accuracy.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: August 9, 2016
    Assignee: AMCAD BIOMED CORPORATION
    Inventors: Po-Hsiang Tsui, Ming-Chih Ho, Chiung-Nein Chen, Argon Chen, Jia-Jiun Chen, Yu-Hsin Wang, Kuo-Chen Huang
  • Publication number: 20160133020
    Abstract: The present invention provides an acceleration and enhancement methods for ultrasound scatterer structure visualization. The method includes: obtaining an ultrasonic image, calculating all values of the ultrasonic signal points in each mth window centered at a nth signal point to obtain a plurality of original statistical values anxm, obtaining a plurality of mth statistical values by averaging value of original statistical values in the same window, calculating a plurality of mth weighting values based on the statistical values by different weighting formulas, multiplying each weighting value with the original statistical values corresponding to the various size of windows, summing up to obtain an ultrasound structure scatterer value of the nth ultrasonic signal point, and generating an ultrasound scatterer structure image based on a matrix of the ultrasound scatterer values. The present invention further combined interpolation method can reduce the computation time and retain the 80% accuracy.
    Type: Application
    Filed: May 5, 2015
    Publication date: May 12, 2016
    Inventors: Po-Hsiang Tsui, Ming-Chih Ho, Chiung-Nein Chen, Argon Chen, Jia-Jiun Chen, Yu-Hsin Wang, Kuo-Chen Huang
  • Publication number: 20150148671
    Abstract: A non-invasive liver fibrosis evaluation device and a method thereof are related. The device comprises an ultrasound unit, a Nakagami parameter generation unit, a hardness value generation unit, a data base, and a determination unit. The method comprises steps of: scanning the external body part corresponding to the liver by a transducer of the ultrasound unit to produce plural ultrasound image data sets; analyzing one ultrasound image data set with the Nakagami distribution to produce a Nakagami parameter by using the. Nakagami parameter generation unit; analyzing plural ultrasound image data sets to produce a hardness value by using the hardness value generation unit; and evaluating the liver fibrosis by comparing the Nakagami parameter and the hardness value with plural reference parameter sets stored in the data base by using the determination unit.
    Type: Application
    Filed: February 19, 2014
    Publication date: May 28, 2015
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Chiung-Nien CHEN, Ming-Chih HO, King-Jen CHANG, Po-Hsiang TSUI, Yu-Chen SHU
  • Patent number: 8948474
    Abstract: A quantification method and an imaging method are disclosed, capable of quantifying the margin feature, the cysts feature, the calcifications feature, the echoic feature and the heterogenesis feature of a tumor, and capable of imaging the margin feature, the cysts feature, the calcifications feature and the heterogenesis feature of a tumor. The quantification method and the imaging method calculate the moving variance of the gray scale of each of the pixel points based on the gradient value of the gray scale of these pixel points. Then, depending on the purpose of the quantification method or the imaging method, the maximum value, the minimum value, the mean value, and the standard deviation of the moving variance of the gray scale of these pixel points are calculated, respectively. At final, with the definition of the threshold value and the imaging rule, the above features of the tumor are quantified or imaged.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: February 3, 2015
    Assignee: Amcad BioMed Corporation
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Po Wei Tsai, Chung Wei Liu, Hsin-Jung Wu
  • Publication number: 20140364776
    Abstract: An ultrasound energy barrier for avoiding energy accumulation in a to-be-protected region during tumor treatment has a barrier element and a positioning element. The barrier element is attached to a body surface of an animal outside a to-be-protected region and a to-be-treated tumor in turn, the barrier element has an outline matched with the to-be-protected region to thus shield the to-be-protected region, so as to avoid energy accumulation in the to-be-protected region during an ultrasound focusing treatment of the to-be-treated tumor. The positioning element positioning the barrier element on the body surface during the ultrasound focusing treatment.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventors: Jia-yush Yen, Yu-tin Chao, Ya-lin Yu, Che-jung Hsu, Yung-yaw Chen, Ming-chih Ho
  • Patent number: 8572006
    Abstract: The present invention relates to a method for multi-layer classifier applying on a computer readable medium for classifying multiple image samples. The method at least comprising the following steps: (a) receiving a plurality of samples; (b) providing a plurality of attributes, and evaluating a significance of the attributes by a selection criterion; (c) selecting at least one cut-point to establish a discriminant analysis model; (d) proceeding a step of evaluating a performance of the discriminant analysis model by adding the attributes to the discriminant analysis model; and (e) providing a stop criterion. The present invention also provides a computer readable medium for classifying multiple image samples by using the method for multi-layer classifier.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 29, 2013
    Assignee: AmCad BioMed Corporation
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Hsin-Jung Wu
  • Patent number: 8374892
    Abstract: The present invention related to a method for retrieving a tumor contour of an image processing system that includes a memory storing a grayscale image and a processor, comprising: receiving an input tumor contour of the grayscale image; defining a tumor contour annular region and a plurality of reference segments of the grayscale image, wherein the input tumor contour is in the tumor contour annular region, and each of the plurality of reference segments is across the tumor contour annular region and includes a plurality of measured points; retrieving a tumor contour suggestion point on each of the plurality of reference segments; and linking all the tumor contour suggestion points on all of the reference segments, for forming the tumor contour. Accordingly, by applying the method of the present invention, a doctor can rapidly and accurately identify the contour of a tumor in a grayscale image.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: February 12, 2013
    Assignee: AmCad BioMed Corporation
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Po Wei Tsai
  • Publication number: 20110182489
    Abstract: The present invention related to a method for retrieving a tumor contour of an image processing system that includes a memory storing a grayscale image and a processor, comprising: receiving an input tumor contour of the grayscale image; defining a tumor contour annular region and a plurality of reference segments of the grayscale image, wherein the input tumor contour is in the tumor contour annular region, and each of the plurality of reference segments is across the tumor contour annular region and includes a plurality of measured points; retrieving a tumor contour suggestion point on each of the plurality of reference segments; and linking all the tumor contour suggestion points on all of the reference segments, for forming the tumor contour. Accordingly, by applying the method of the present invention, a doctor can rapidly and accurately identify the contour of a tumor in a grayscale image.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Po Wei Tsai
  • Publication number: 20110182522
    Abstract: The present invention relates to a method for multi-layer classifier applying on a computer readable medium for classifying multiple image samples. The method at least comprising the following steps: (a) receiving a plurality of samples; (b) providing a plurality of attributes, and evaluating a significance of the attributes by a selection criterion; (c) selecting at least one cut-point to establish a discriminant analysis model; (d) proceeding a step of evaluating a performance of the discriminant analysis model by adding the attributes to the discriminant analysis model; and (e) providing a stop criterion. The present invention also provides a computer readable medium for classifying multiple image samples by using the method for multi-layer classifier.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: King Jen Chang, Wen Hwa Chen, Argon Chen, Chiung Nein Chen, Ming Chih Ho, Hao Chih Tai, Ming Hsun Wu, Hsin-Jung Wu