Patents by Inventor Ming-Ching Lin

Ming-Ching Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240154025
    Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming isolation regions on opposing sides of the fin; forming a dummy gate electrode over the fin; removing lower portions of the dummy gate electrode proximate to the isolation regions, where after removing the lower portions, there is a gap between the isolation regions and a lower surface of the dummy gate electrode facing the isolation regions; filling the gap with a gate fill material; after filling the gap, forming gate spacers along sidewalls of the dummy gate electrode and along sidewalls of the gate fill material; and replacing the dummy gate electrode and the gate fill material with a metal
    Type: Application
    Filed: January 10, 2024
    Publication date: May 9, 2024
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Patent number: 11956897
    Abstract: A semiconductor package device includes a first dielectric layer, a first interconnection layer, a second interconnection layer, and a second dielectric layer. The first dielectric layer has a first surface, a second surface opposite to the first surface and a lateral surface extending between the first surface and the second surface. The first interconnection layer is within the first dielectric layer. The second interconnection layer is on the second surface of the first dielectric layer and extends from the second surface of the first dielectric layer into the first dielectric layer to electrically connect to the first interconnection layer. The second dielectric layer covers the second surface and the lateral surface of the first dielectric layer and the second interconnection layer.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: April 9, 2024
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Ming-Ze Lin, Chia Ching Chen, Yi Chuan Ding
  • Publication number: 20240113112
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20240096893
    Abstract: A semiconductor device includes a substrate. The semiconductor device includes a fin that is formed over the substrate and extends along a first direction. The semiconductor device includes a gate structure that straddles the fin and extends along a second direction perpendicular to the first direction. The semiconductor device includes a first source/drain structure coupled to a first end of the fin along the first direction. The gate structure includes a first portion protruding toward the first source/drain structure along the first direction. A tip edge of the first protruded portion is vertically above a bottom surface of the gate structure.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shih-Yao Lin, Chao-Cheng Chen, Chih-Han Lin, Ming-Ching Chang, Wei-Liang Lu, Kuei-Yu Kao
  • Publication number: 20240096705
    Abstract: A semiconductor device includes a plurality of channel layers vertically separated from one another. The semiconductor device also includes an active gate structure comprising a lower portion and an upper portion. The lower portion wraps around each of the plurality of channel layers. The semiconductor device further includes a gate spacer extending along a sidewall of the upper portion of the active gate structure. The gate spacer has a bottom surface. Moreover, a dummy gate dielectric layer is disposed between the gate spacer and a topmost channel layer of plurality of channel layers. The dummy gate dielectric layer is in contact with a top surface of the topmost channel layer, the bottom surface of the gate spacer, and the sidewall of the gate structure.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Yu Kao, Chen-Yui Yang, Hsien-Chung Huang, Chao-Cheng Chen, Shih-Yao Lin, Chih-Chung Chiu, Chih-Han Lin, Chen-Ping Chen, Ke-Chia Tseng, Ming-Ching Chang
  • Patent number: 11916131
    Abstract: According to an exemplary embodiment, a method of forming a vertical device is provided. The method includes: providing a protrusion over a substrate; forming an etch stop layer over the protrusion; laterally etching a sidewall of the etch stop layer; forming an insulating layer over the etch stop layer; forming a film layer over the insulating layer and the etch stop layer; performing chemical mechanical polishing on the film layer and exposing the etch stop layer; etching a portion of the etch stop layer to expose a top surface of the protrusion; forming an oxide layer over the protrusion and the film layer; and performing chemical mechanical polishing on the oxide layer and exposing the film layer.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: De-Fang Chen, Teng-Chun Tsai, Cheng-Tung Lin, Li-Ting Wang, Chun-Hung Lee, Ming-Ching Chang, Huan-Just Lin
  • Patent number: 11762132
    Abstract: An imaging lens assembly module has an optical axis, and includes at least one plastic lens element, a carrier element and a light absorbing layer. The plastic lens element, in order from a center to a peripheral region thereof, includes an optical effective portion and a peripheral portion. A side of the peripheral portion includes a plurality of step structures interposed between the side of the peripheral portion and a same side of the optical effective portion. The carrier element defines an inner space for disposing the plastic lens element, and includes a tip end minimal opening and a plurality of annular inner walls. The light absorbing layer is disposed on the peripheral portion of the plastic lens element, and the step structures and the at least one of the annular inner walls facing towards the plastic lens element.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: September 19, 2023
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Ming-Ta Chou, Cheng-Feng Lin, Po-Lun Hsu, Ming-Shun Chang, Ming-Ching Lin
  • Publication number: 20210088698
    Abstract: An imaging lens assembly module has an optical axis, and includes at least one plastic lens element, a carrier element and a light absorbing layer. The plastic lens element, in order from a center to a peripheral region thereof, includes an optical effective portion and a peripheral portion. A side of the peripheral portion includes a plurality of step structures interposed between the side of the peripheral portion and a same side of the optical effective portion. The carrier element defines an inner space for disposing the plastic lens element, and includes a tip end minimal opening and a plurality of annular inner walls. The light absorbing layer is disposed on the peripheral portion of the plastic lens element, and the step structures and the at least one of the annular inner walls facing towards the plastic lens element.
    Type: Application
    Filed: July 20, 2020
    Publication date: March 25, 2021
    Inventors: Ming-Ta CHOU, Cheng-Feng LIN, Po-Lun HSU, Ming-Shun CHANG, Ming-Ching LIN
  • Publication number: 20200089855
    Abstract: A method of password authentication by eye tracking for a computing device of a virtual reality (VR) system is disclosed. The method comprises obtaining a user's focus point, displaying at least a graphical unlocking pattern for the user by a head-mounted display (HMD) of the VR system, determining whether the user's focus point is at the graphical unlocking patterns within a time interval or following a preconfigured focal sequence, and determining a password authentication operation is unlocked when the focus point at the graphical unlocking patterns within the time interval or following the preconfigured focal sequence.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 19, 2020
    Inventors: Peter Chou, Ming-Ching Lin, Yi-Yang Feng
  • Patent number: 10408875
    Abstract: A testing system includes a subtractor and a divider. The subtractor is configured to receive a first voltage of a circuit being tested and a second voltage of the circuit, and to derive a difference between the first voltage and the second voltage. The divider is configured to receive the difference between the first voltage and the second voltage, and to derive a resistance of the circuit by dividing (i) the difference between the first voltage and the second voltage by (ii) a difference between a first current applied to the circuit and a second current applied to the circuit. The first voltage is corresponding to the first current, and the second voltage is corresponding to the second current.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: September 10, 2019
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Yu-Jung Chang, Wei-Kai Liao, Ming-Ching Lin, Kuei-Hao Tseng
  • Publication number: 20170363682
    Abstract: A testing system includes a subtractor and a divider. The subtractor is configured to receive a first voltage of a circuit being tested and a second voltage of the circuit, and to derive a difference between the first voltage and the second voltage. The divider is configured to receive the difference between the first voltage and the second voltage, and to derive a resistance of the circuit by dividing (i) the difference between the first voltage and the second voltage by (ii) a difference between a first current applied to the circuit and a second current applied to the circuit. The first voltage is corresponding to the first current, and the second voltage is corresponding to the second current.
    Type: Application
    Filed: June 15, 2016
    Publication date: December 21, 2017
    Inventors: Yu-Jung CHANG, Wei-Kai LIAO, Ming-Ching LIN, Kuei-Hao TSENG
  • Patent number: 8526115
    Abstract: This invention provides an imaging lens system including, in order from an object side to an image side: a first lens group with negative refractive power comprising a single first lens element with negative refractive power; a second lens group with positive refractive power comprising, in order from the object side to the image side: a second lens element with positive refractive power; a third lens element with negative refractive power; an aperture stop; and a fourth lens element with negative refractive power; and a third lens group with positive refractive power comprising a single fifth lens element with positive refractive power; wherein by moving the first lens group and the second lens group along the optical axis while keeping the third lens group stationary, the zooming operation is performed such that the system switches between a wide-angle mode and a telephoto mode.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: September 3, 2013
    Assignee: Largan Precision Co., Ltd.
    Inventor: Ming-Ching Lin
  • Patent number: 8482864
    Abstract: This invention provides a compact imaging lens assembly, in order from an object side to an image side, including a first lens element with positive refractive power having a convex object-side surface and a concave image-side surface with at least one of the two surfaces thereof being aspheric, a second lens element with negative refractive power having a concave object-side surface and a convex image-side surface with at least one of the two surfaces thereof being aspheric, and an aperture stop disposed between the first and second lens elements. There are only two lens elements with refractive power in the compact imaging lens assembly. By such an arrangement, total track length and optical sensitivity of the compact imaging lens assembly can be reduced while a high image quality can also be obtained.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 9, 2013
    Assignee: Largan Precision Co., Ltd.
    Inventors: Ming Ching Lin, Hsiang Chi Tang, Tsung Han Tsai
  • Patent number: 8369009
    Abstract: This invention provides an NIR imaging lens assembly comprising a lens element with refractive power made of a visible-light-absorbable material, and a filter or a filter film formed on one lens element with refractive power for filtering out infrared light, wherein the number of lens elements with refractive power in the NIR imaging lens assembly is N, and wherein N?2. The above lens arrangement allows light in a specific NIR wavelength range to pass through the lens assembly, thereby reducing interferences or influences from light in the other wavelength ranges. As a result, the resolution of the imaging lens assembly is improved, and its total track length is reduced effectively so that the entire lens system can be compact.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: February 5, 2013
    Assignee: Largan Precision Co., Ltd.
    Inventors: Ming Ching Lin, Chien Pang Chang, Hsiang Chi Tang, Tsung Han Tsai
  • Patent number: 8310768
    Abstract: This invention provides an optical imaging lens system including five lens elements with refractive power, in order from an object side toward an image side: a first lens element with positive refractive power having a convex object-side surface, a second lens element with negative refractive power, a third lens element having a convex object-side surface and a concave image-side surface, a fourth lens element having both surfaces being aspheric, a fifth lens element having a concave image-side surface with at least one inflection point formed thereon. By such arrangement, the total track length and the sensitivity of the optical imaging lens system can be reduced while achieving high image resolution.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 13, 2012
    Assignee: Largan Precision Co., Ltd.
    Inventors: Ming Ching Lin, Hsin Hsuan Huang
  • Patent number: 8289624
    Abstract: This invention provides an imaging lens system including, in order from an object side to an image side: a first lens group with negative refractive power comprising a single first lens element with negative refractive power; a second lens group with positive refractive power comprising, in order from the object side to the image side: a second lens element with positive refractive power; a third lens element with negative refractive power; an aperture stop; and a fourth lens element with negative refractive power; and a third lens group with positive refractive power comprising a single fifth lens element with positive refractive power; wherein by moving the first lens group and the second lens group along the optical axis while keeping the third lens group stationary, the zooming operation is performed such that the system switches between a wide-angle mode and a telephoto mode.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: October 16, 2012
    Assignee: Largan Precision Co., Ltd.
    Inventor: Ming-Ching Lin
  • Patent number: 8253843
    Abstract: An optical lens system for taking image comprises: a first lens element with positive refractive power, an Abbe Number of the first lens element being V1, and it satisfying the relation: 50<V1<60; a second lens element with negative refractive power having a concave object-side surface and a convex image-side surface; a third lens element having a convex object-side surface and a concave image-side surface, at least one of the object-side and the image-side surfaces of the third lens element being aspheric; a fourth lens element having at least one aspheric surface; and an aperture stop being located in front of the second lens element.
    Type: Grant
    Filed: August 7, 2010
    Date of Patent: August 28, 2012
    Assignee: Largan Precision Co., Ltd.
    Inventor: Ming-Ching Lin
  • Publication number: 20120140106
    Abstract: This invention provides an imaging lens system including, in order from an object side to an image side: a first lens group with negative refractive power comprising a single first lens element with negative refractive power; a second lens group with positive refractive power comprising, in order from the object side to the image side: a second lens element with positive refractive power; a third lens element with negative refractive power; an aperture stop; and a fourth lens element with negative refractive power; and a third lens group with positive refractive power comprising a single fifth lens element with positive refractive power; wherein by moving the first lens group and the second lens group along the optical axis while keeping the third lens group stationary, the zooming operation is performed such that the system switches between a wide-angle mode and a telephoto mode.
    Type: Application
    Filed: February 13, 2012
    Publication date: June 7, 2012
    Applicant: LARGAN PRECISION CO., LTD.
    Inventor: Ming-Ching LIN
  • Publication number: 20120069455
    Abstract: This invention provides an optical imaging lens system including five lens elements with refractive power, in order from an object side toward an image side: a first lens element with positive refractive power having a convex object-side surface, a second lens element with negative refractive power, a third lens element having a convex object-side surface and a concave image-side surface, a fourth lens element having both surfaces being aspheric, a fifth lens element having a concave image-side surface with at least one inflection point formed thereon. By such arrangement, the total track length and the sensitivity of the optical imaging lens system can be reduced while achieving high image resolution.
    Type: Application
    Filed: November 22, 2010
    Publication date: March 22, 2012
    Applicant: LARGAN PRECISION CO., LTD.
    Inventors: Ming Ching Lin, Hsin Hsuan Huang
  • Publication number: 20110279910
    Abstract: This invention provides a photographing optical lens assembly comprising, in order from an object side to an image side: a first lens element with positive refractive power having a convex object-side surface; a second lens element with negative refractive power having a concave object-side surface and a concave image-side surface, the object-side and image-side surfaces thereof being aspheric; a third lens element having a concave image-side surface, the object-side and image-side surfaces thereof being aspheric, at least one inflection point formed on the image-side surface; wherein there are three lens elements with refractive power. Such an arrangement of lens elements can effectively reduce the total track length of the lens assembly, attenuate the sensitivity of the optical system and obtain higher resolution.
    Type: Application
    Filed: July 29, 2010
    Publication date: November 17, 2011
    Applicant: LARGAN PRECISION CO., LTD.
    Inventors: Hsiang Chi Tang, Chun Shan Chen, Ming Ching Lin