Patents by Inventor Ming-Chiu Tsai

Ming-Chiu Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8217621
    Abstract: A frequency modulation type wireless power supply and charger system includes a power supply base unit consisting of a first microprocessor, a power circuit, a power switch driver circuit, a first resonant circuit, a first coil, a detection module and a power input interface, and a wireless power supply and charge receiver unit consisting of a secondary coil, a second resonant circuit, a rectifier filter circuit, a detection and protection module, a second microprocessor, a temperature sensor, a charging module and a power output interface and adapted for receiving electrical power from the power supply base unit wirelessly for charging an external electronic device.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: July 10, 2012
    Assignee: Fu Da Tong Technology Co., Ltd.
    Inventors: Ming-Chiu Tsai, Chi-Che Chan
  • Publication number: 20120074899
    Abstract: The present inventions relates a wireless charging coil structure in electronic devices, comprising a PS coil module capable of emitting electromagnetic wave energy and a PR coil module capable of receiving power energy by electromagnetic induction. Each of the PS and PR coil modules includes a bar-shaped magnetic conductor, on which an insulated wire is wound into a first coil that is extended along the magnetic conductor to a given length and wound reversely into a second coil, thus producing an induction coil comprising at least the first and second coils. The induction range with given space formed between the first and second coils is used for electromagnetic induction to transmit signals and power energy. Such structure can be applied not only in planar handheld electronic devices, but also in other wireless power transmission systems that require narrow induction surface for power transmission.
    Type: Application
    Filed: October 18, 2011
    Publication date: March 29, 2012
    Inventors: Ming-Chiu TSAI, Chi-Che Chan
  • Publication number: 20120007443
    Abstract: The present inventions relates to a method for power self-regulation in a high-power induction type power source, wherein the PS module includes a PS microprocessor that is electrically connected to a PS driving unit, signal analysis circuit, coil voltage detection circuit, display unit, PS unit and earthing terminal respectively, and further connected with a resonance circuit and PS coil electrically through the PS driving unit, while the PR module contains a PR microprocessor electrically connected with a voltage detection circuit, breaker protection circuit, voltage stabilizing circuit, AM carrier modulation circuit, DC step-down transformer, rectifying filter circuit and resonance circuit respectively. While transmitting electric power, the PS module receives and analyzes data signals and then regulates the transmitted power through self-regulation programs in the microprocessor, thus achieving the purpose of power self-regulation for the PR module.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 12, 2012
    Inventors: Ming-Chiu Tsai, Chi-Che Chan
  • Publication number: 20110298419
    Abstract: The present invention relates to a method for identification of a light inductive charger, in which a power base includes a light receiving hole to expose a light receiver, and a light emitting component is established in a light emitter of a wireless charging receiver to emit lights towards the light receiving hole. The power base transmits electromagnetic wave energy to the receiving terminal for a short period of time when finding it covered by an object, in a dark place or covered by the wireless charging receiver after having received lights from the light receiver through the light receiving hole and transmitted the signals to the microprocessor via a voltage detection circuit. The charging module of the wireless charging receiver, if not fully charged, feeds back light signals for the same time period to indicate that charging is required. Then charging energy of electromagnetic waves will be emitted to start charging.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 8, 2011
    Inventors: Ming-Chiu TSAI, Chi-Che CHAN
  • Publication number: 20110299636
    Abstract: A high-power induction-type power supply system includes a supplying-end module consisting of a supplying-end microprocessor, a power driver unit, a signal analysis circuit, a coil voltage detection circuit, a display unit, a power supplying unit, a resonant circuit, a supplying-end coil and a shunt resistor unit, and a receiving-end module consisting of a receiving-end microprocessor, a voltage detection circuit, a rectifier and filter circuit, an amplitude modulation circuit, a protection circuit breaker, a voltage stabilizer circuit, a DC-DC buck converter, a resonant circuit and a receiving-end coil. Subject to time series arrangement, the high-power induction-type power supply system allows transmission of data signal in a stable manner during a charging operation, assuring system operation stability and low power loss. By means of bi-phase decoding, data code is accurately decoded when the receiving-end module is at full load, ensuring system operating reliability.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 8, 2011
    Inventors: Ming-Chiu Tsai, Chi-Che Chan
  • Publication number: 20110291489
    Abstract: A power transmission method used in a high-power wireless induction power supply system consisting of a power-supplying module and a power-receiving module is disclosed. The power-supplying module regulates its output energy by means of frequency modulation and driving power adjustment, enabling the energy to be received by the power-receiving module and transmitted through a power-receiving coil array and a primary resonant capacitor and a secondary resonant capacitor of power-receiving resonance circuit, a synchronizing rectifier, a low-power voltage stabilizer, a high-frequency filter capacitor, a first power switch, a low-frequency filter capacitor and a second power switch of a filter circuit for output to an external apparatus.
    Type: Application
    Filed: October 6, 2010
    Publication date: December 1, 2011
    Inventors: Ming-Chiu TSAI, Chi-Che CHAN
  • Publication number: 20110278949
    Abstract: A high-power induction-type power supply system includes a supplying-end module consisting of a supplying-end microprocessor, a power driver unit, a signal analysis circuit, a coil voltage detection circuit, a display unit, a power supplying unit, a resonant circuit and a supplying-end coil, and a receiving-end module consisting of a receiving-end microprocessor, a voltage detection circuit, a rectifier and filter circuit, an amplitude modulation circuit, a protection circuit breaker, a voltage stabilizer circuit, a DC-DC buck converter, a resonant circuit and a receiving-end coil. By means of single bit data analysis to start up power supply, sensing signal transmitting time during standby mode is minimized. Subject to asymmetric data signal data encoding and decoding system to recognize data code, power loss is minimized during synchronous transmission of power supply and data signal, and a high capacity of fault tolerance is achieved.
    Type: Application
    Filed: June 7, 2011
    Publication date: November 17, 2011
    Inventors: Ming-Chiu TSAI, Chi-Che CHAN
  • Publication number: 20110264945
    Abstract: A power supply and data signal transmission method used in an induction type power supply system consisting of a power supply module and a power-receiving module for transmission of electrical energy and data signal is disclosed. The microprocessor of the power supply module scans the resonant point of the power supply coil to send a segment of energy for recognition of a feedback signal from the power-receiving module and then starts providing power supply after receipt of the feedback signal, and then runs further signal modulation, transmission, data decoding and other follow-up steps, achieving transmission of electrical energy and data signal wirelessly.
    Type: Application
    Filed: August 31, 2010
    Publication date: October 27, 2011
    Applicant: FU DA TONG TECHNOLOGY CO., LTD.
    Inventors: Ming-Chiu Tsai, Chi-Che Chan
  • Publication number: 20110215757
    Abstract: A wireless driver system includes a mobile power supply module consisting of a transmitter-receiver coil, a resonant circuit, a charging circuit assembly, a power supply circuit assembly, a signal generator circuit, a power storage unit, a microprocessor and a voltage sensing circuit and controllable to transmit an electrical energy and a control signal wirelessly to a driver, and a driver consisting of a receiver coil, a resonant circuit, a signal sensing circuit, a power-receiving circuit, a microprocessor, a motor driver circuit and a driving mechanism and adapted for receiving the electrical energy and control signal from the mobile power supply module for switching the driving mechanism between two opposing positions.
    Type: Application
    Filed: December 13, 2010
    Publication date: September 8, 2011
    Inventor: Ming-Chiu TSAI
  • Publication number: 20110199046
    Abstract: A frequency modulation type wireless power supply and charger system includes a power supply base unit consisting of a first microprocessor, a power circuit, a power switch driver circuit, a first resonant circuit, a first coil, a detection module and a power input interface, and a wireless power supply and charge receiver unit consisting of a secondary coil, a second resonant circuit, a rectifier filter circuit, a detection and protection module, a second microprocessor, a temperature sensor, a charging module and a power output interface and adapted for receiving electrical power from the power supply base unit wirelessly for charging an external electronic device.
    Type: Application
    Filed: May 4, 2010
    Publication date: August 18, 2011
    Inventors: Ming-Chiu TSAI, Chi-Che Chan