Patents by Inventor Ming-Da Tsai

Ming-Da Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967579
    Abstract: A method for forming a package structure is provided. The method includes etching a top surface of a substrate to form a cavity. The substrate includes thermal vias directly under a bottom surface of the cavity. The method also includes forming at least one first electronic device in the cavity of the substrate. The first electronic device is thermally coupled to the thermal vias. The method further includes forming an encapsulating material in the cavity, so that the encapsulating material extends along sidewalls of the first electronic device and covers a surface of the first electronic device opposite the bottom surface of the cavity. In Addition, the method includes forming an insulating layer having an RDL structure over the encapsulating material. The RDL structure is electrically connected to the first electronic device.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Po-Hao Tsai, Ming-Da Cheng, Mirng-Ji Lii
  • Patent number: 11961762
    Abstract: A method includes forming a first conductive feature, depositing a passivation layer on a sidewall and a top surface of the first conductive feature, etching the passivation layer to reveal the first conductive feature, and recessing a first top surface of the passivation layer to form a step. The step comprises a second top surface of the passivation layer. The method further includes forming a planarization layer on the passivation layer, and forming a second conductive feature extending into the passivation layer to contact the first conductive feature.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Da Cheng, Tzy-Kuang Lee, Song-Bor Lee, Wen-Hsiung Lu, Po-Hao Tsai, Wen-Che Chang
  • Patent number: 11955423
    Abstract: Methods for forming dummy under-bump metallurgy structures and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first redistribution line and a second redistribution line over a semiconductor substrate; a first passivation layer over the first redistribution line and the second redistribution line; a second passivation layer over the first passivation layer; a first under-bump metallurgy (UBM) structure over the first redistribution line, the first UBM structure extending through the first passivation layer and the second passivation layer and being electrically coupled to the first redistribution line; and a second UBM structure over the second redistribution line, the second UBM structure extending through the second passivation layer, the second UBM structure being electrically isolated from the second redistribution line by the first passivation layer.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Li Yang, Po-Hao Tsai, Ming-Da Cheng, Yung-Han Chuang, Hsueh-Sheng Wang
  • Patent number: 11955460
    Abstract: In accordance with some embodiments, a package-on-package (PoP) structure includes a first semiconductor package having a first side and a second side opposing the first side, a second semiconductor package having a first side and a second side opposing the first side, and a plurality of inter-package connector coupled between the first side of the first semiconductor package and the first side of the second semiconductor package. The PoP structure further includes a first molding material on the second side of the first semiconductor package. The second side of the second semiconductor package is substantially free of the first molding material.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Da Tsai, Meng-Tse Chen, Sheng-Feng Weng, Sheng-Hsiang Chiu, Wei-Hung Lin, Ming-Da Cheng, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20240097715
    Abstract: This case is directed to supporting LB/LB, LB/MB, LB/HB and MB/HB carrier aggregation while reducing the area consumed on a transceiver and reducing power consumed on the transceiver. In some cases, four supporting such carrier aggregation may include implementing four separate radio frequency mixer chains. However, implementing four separate mixer chains may consume excessive area on the transceiver and may result in excessive transceiver power consumption. By leveraging the fact that HB LO frequency ranges overlap with LB LO frequency ranges, a dual-band gain stage may be implemented such that an LB/HB mixer may share a single LO signal (e.g., so as to provide a dual-band matching network that may provide impedance matching at LB and HB frequencies) without extending an original LB LO signal bandwidth. The dual-band gain stage may reduce space and power consumed on the transceiver while maintaining support for LB/LB, LB/MB, LB/HB and MB/HB carrier aggregation.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: Haowei Jiang, Ming-Da Tsai
  • Publication number: 20240097716
    Abstract: This case is directed to supporting LB/LB, LB/MB, LB/HB and MB/HB carrier aggregation while reducing the area consumed on a transceiver and reducing power consumed on the transceiver. In some cases, four supporting such carrier aggregation may include implementing four separate radio frequency mixer chains. However, implementing four separate mixer chains may consume excessive area on the transceiver and may result in excessive transceiver power consumption. By leveraging the fact that HB LO frequency ranges overlap with LB LO frequency ranges, a dual-band gain stage may be implemented such that an LB/HB mixer may share a single LO signal (e.g., so as to provide a dual-band matching network that may provide impedance matching at LB and HB frequencies) without extending an original LB LO signal bandwidth. The dual-band gain stage may reduce space and power consumed on the transceiver while maintaining support for LB/LB, LB/MB, LB/HB and MB/HB carrier aggregation.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: Haowei Jiang, Ming-Da Tsai
  • Publication number: 20240096827
    Abstract: In an embodiment, a device includes: a passivation layer on a semiconductor substrate; a first redistribution line on and extending along the passivation layer; a second redistribution line on and extending along the passivation layer; a first dielectric layer on the first redistribution line, the second redistribution line, and the passivation layer; and an under bump metallization having a bump portion and a first via portion, the bump portion disposed on and extending along the first dielectric layer, the bump portion overlapping the first redistribution line and the second redistribution line, the first via portion extending through the first dielectric layer to be physically and electrically coupled to the first redistribution line.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Inventors: Chen-Shien Chen, Ting-Li Yang, Po-Hao Tsai, Chien-Chen Li, Ming-Da Cheng
  • Publication number: 20240096787
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes an interconnection structure over a semiconductor substrate and a conductive pillar over the interconnection structure. The conductive pillar has a protruding portion extending towards the semiconductor substrate from a lower surface of the conductive pillar. The semiconductor device structure also includes an upper conductive via between the conductive pillar and the interconnection structure and a lower conductive via between the upper conductive via and the interconnection structure. The lower conductive via is electrically connected to the conductive pillar through the upper conductive via. The conductive pillar extends across opposite sidewalls of the upper conductive via and opposite sidewalls of the lower conductive via. A top view of an entirety of the second conductive via is separated from a top view of an entirety of the protruding portion.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Inventors: Ming-Da CHENG, Wei-Hung LIN, Hui-Min HUANG, Chang-Jung HSUEH, Po-Hao TSAI, Yung-Sheng LIN
  • Patent number: 11640184
    Abstract: Aspects of the disclosure provide methods and apparatuses for generating an internal reset signal that is synchronous to a clock signal. In some embodiments, an apparatus includes a clock switch circuit and a plurality of serially coupled D flip-flops (DFFs). The clock switch circuit receiving the clock signal can output the clock signal in an on state and block the clock signal in an off state. The plurality of serially coupled DFFs are coupled to the clock switch circuit and driven by the clock signal. If an external reset signal is enabled, the plurality of serially coupled DFFs can enable the internal reset signal. If the external reset signal is disabled, after a predefined number of clock signal cycles, the plurality of serially coupled DFFs can disable the internal reset signal.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: May 2, 2023
    Assignee: MEDIATEK INC.
    Inventors: Chien-Wei Tseng, Mohammed Fathey Abdelfattah Hassan, Li-Shin Lai, Tzu-Yu Yeh, Ming-Da Tsai, Bernard Mark Tenbroek
  • Publication number: 20210004042
    Abstract: Aspects of the disclosure provide methods and apparatuses for generating an internal reset signal that is synchronous to a clock signal. In some embodiments, an apparatus includes a clock switch circuit and a plurality of serially coupled D flip-flops (DFFs). The clock switch circuit receiving the clock signal can output the clock signal in an on state and block the clock signal in an off state. The plurality of serially coupled DFFs are coupled to the clock switch circuit and driven by the clock signal. If an external reset signal is enabled, the plurality of serially coupled DFFs can enable the internal reset signal. If the external reset signal is disabled, after a predefined number of clock signal cycles, the plurality of serially coupled DFFs can disable the internal reset signal.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Applicant: MEDIATEK INC.
    Inventors: Chien-Wei TSENG, Mohammed Fathey Abdelfattah HASSAN, Li-Shin LAI, Tzu-Yu YEH, Ming-Da TSAI, Bernard Mark TENBROEK
  • Patent number: 10419046
    Abstract: A quadrature transmitter includes a first and second matched transmitter path. Each transmitter path receives respective sets of quadrature baseband signals. At least one local oscillator port receives respective sets of quadrature LO signals. Mixer stage(s) respectively multiply the sets of quadrature baseband signals with the respective sets of quadrature LO signals to produce a respective output radio frequency signal. A combiner combines the output RF signals. The first set of quadrature signals is a substantially 45° phase shifted version of the second set of quadrature signals; and the first set of quadrature LO signals is a reverse substantially 45° phase shifted version of the second set of quadrature LO signals. A baseband error correction circuit corrects a phase error between the quadrature baseband signals at baseband and a LO error correction circuit corrects a phase error between the quadrature baseband signals at a LO frequency.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: September 17, 2019
    Assignee: MediaTek Singapore Pte. Ltd
    Inventors: Yangjian Chen, Bernard Mark Tenbroek, Chien-Wei Tseng, Ian Tseng, Ming-Da Tsai, Chien-Cheng Lin
  • Patent number: 10277179
    Abstract: A radio-frequency (RF) power amplifier includes a matching network comprising at least one matching network circuit corresponding to at least one symmetry node, at least one detector for detecting power of a detected signal at the symmetry node of the matching network, and generating at least one control signal according to the power of the detected signal, wherein the detected signal is an odd harmonic of an RF signal when the RF power amplifier operates in a differential mode or an even harmonic of the RF signal when the RF power amplifier operates in a common mode, and at least one adjusting circuit for adjusting the RF signal according to the at least one control signal.
    Type: Grant
    Filed: October 1, 2017
    Date of Patent: April 30, 2019
    Assignee: MEDIATEK INC.
    Inventors: Jui-Chih Kao, Ming-Da Tsai, Po-Sen Tseng
  • Patent number: 10171034
    Abstract: A harmonic-rejection mixer apparatus includes a mixing circuit and a combining circuit. The mixing circuit receives mixes an input signal and a first local oscillator (LO) signal to generate a first output signal, and mixes the same input signal and a second LO signal to generate a second output signal, wherein the first LO signal and the second LO signal have a same frequency but different phases. The combining circuit combines the first output signal and the second output signal, wherein harmonic rejection is at least achieved by combination of the first output signal and the second output signal.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: January 1, 2019
    Assignee: MEDIATEK INC.
    Inventors: Chien-Wei Tseng, Ian Tseng, Ming-Da Tsai, Yangjian Chen, Chien-Cheng Lin
  • Publication number: 20180302111
    Abstract: A quadrature transmitter includes a first and second matched transmitter path. Each transmitter path receives respective sets of quadrature baseband signals. At least one local oscillator port receives respective sets of quadrature LO signals. Mixer stage(s) respectively multiply the sets of quadrature baseband signals with the respective sets of quadrature LO signals to produce a respective output radio frequency signal. A combiner combines the output RF signals. The first set of quadrature signals is a substantially 45° phase shifted version of the second set of quadrature signals; and the first set of quadrature LO signals is a reverse substantially 45° phase shifted version of the second set of quadrature LO signals. A baseband error correction circuit corrects a phase error between the quadrature baseband signals at baseband and a LO error correction circuit corrects a phase error between the quadrature baseband signals at a LO frequency.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 18, 2018
    Inventors: Yangjian Chen, Bernard Mark Tenbroek, Chien-Wei Tseng, Ian Tseng, Ming-Da Tsai, Chien-Cheng Lin
  • Patent number: 10103691
    Abstract: A power amplifier system includes a differential power amplifier and a bias circuit. The differential power amplifier is arranged for receiving a differential input pair to generate an output signal. The bias circuit is arranged for generating a bias voltage to bias the differential power amplifier, and the bias circuit comprises a source follower for receiving a reference voltage to generate the bias voltage.
    Type: Grant
    Filed: November 27, 2016
    Date of Patent: October 16, 2018
    Assignee: MEDIATEK INC.
    Inventors: Chien-Wei Tseng, Ming-Da Tsai
  • Patent number: 10068856
    Abstract: An integrated circuit apparatus includes a substrate, an IC chip disposed above the substrate, and an electromagnetic shielding layer disposed on a surface of the substrate. The IC chip includes an electromagnetic coupling device. The electromagnetic shielding layer and the electromagnetic coupling device partially overlap in a vertical projection direction of the surface of the substrate.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: September 4, 2018
    Assignee: MEDIATEK INC.
    Inventors: Jui-Chih Kao, Ming-Da Tsai, Yuan-Yu Fu, Chih-Chun Hsu
  • Patent number: 10056869
    Abstract: A control circuit of a power amplifier includes a peak detector, a first comparator, a first current source, a second comparator, a second current source and a bias circuit. The peak detector is arranged for detecting an amplitude of an input signal. The first comparator is arranged for comparing the amplitude of the input signal with a first threshold to generate a first comparing result. The first current source is arranged for generating a first current according to the first comparing result The second comparator is arranged for comparing the amplitude of the input signal with a second threshold to generate a second comparing result. The second current source is arranged for generating a second current according to the second comparing result. The bias circuit is arranged for generating a bias voltage according to the first current and the second current to the power amplifier.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: August 21, 2018
    Assignee: MEDIATEK INC.
    Inventors: Chien-Wei Tseng, Ming-Da Tsai
  • Patent number: 10027300
    Abstract: The present invention provides a control circuit to stabilize an output power of a power amplifier. The control circuit comprises a voltage clamping loop, a current clamping loop and a loop for reducing power variation under VSWR, where the voltage clamping loop is used to clamp an output voltage of the power amplifier within a defined voltage range, the current clamping loop is used to clamp a current of the power amplifier within a defined current range, and the loop for reducing power variation under VSWR is implemented by an impedance detector to compensate the output power under VSWR variation.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: July 17, 2018
    Assignee: MEDIATEK INC.
    Inventors: Lai-Ching Lin, Ming-Da Tsai
  • Patent number: 10009050
    Abstract: A quadrature transmitter is described that comprises: a first transmitter path and a second transmitter path that are matched. Each transmitter path comprises: at least one input arranged to receive respective first or second sets of quadrature baseband signals; at least one local oscillator, LO, port configured to receive respective first and second sets of quadrature LO signals; at least one mixer stage coupled to the at least one input and configured to respectively multiply the sets of quadrature baseband signals with the respective first or second sets of quadrature LO signals to produce a respective output radio frequency, RF, signal; and a combiner configured to combine the output radio frequency signals of the first transmitter path and the second transmitter path.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: June 26, 2018
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Yangjian Chen, Bernard Mark Tenbroek, Chien-Wei Tseng, Ian Tseng, Ming-Da Tsai, Chien-Cheng Lin
  • Patent number: 9960947
    Abstract: A compensation circuit of a power amplifier includes a varactor, a voltage sensor and a control circuit. The varactor is coupled to an input terminal of the power amplifier. The voltage sensor is arranged for detecting an amplitude of an input signal of the power amplifier to generate a detecting result. The control circuit is coupled to the varactor and the voltage sensor, and is arranged for controlling a bias voltage of the varactor to adjust a capacitance of the varactor according to the detecting result.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: May 1, 2018
    Assignee: MEDIATEK INC.
    Inventors: Chien-Cheng Lin, Ming-Da Tsai