Patents by Inventor Ming-Der Ger

Ming-Der Ger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160165766
    Abstract: A method for making an electromagnetic wave shielding material comprises the steps of (a) mixing ternary Fe—Al—Si alloy powders and a solvent to prepare a Fe—Al—Si solution; (b) adding an acid in the Fe—Al—Si solution to release Fe ions through a dissolution reaction; (c) adding copper chloride powders in the Fe—Al—Si solution; (d) adding a lye in the Fe—Al—Si solution to induce a displacement reaction; (e) adding a silane coupling agent in the Fe—Al—Si solution; (f) placing the Fe—Al—Si solution in a microwave reactor to accelerate the displacement reaction; (g) producing a quaternary Cu—Fe—Al—Si alloy after the displacement reaction of the Fe—Al—Si solution, thereby forming a quaternary Cu—Fe—Al—Si alloy solution, which proceeding with a solid-liquid separation and a drying treatment to obtain an electromagnetic wave shielding material composed of quaternary Cu—Fe—Al—Si alloy in solid powders.
    Type: Application
    Filed: December 3, 2014
    Publication date: June 9, 2016
    Inventors: YEN-CHUNG CHEN, SUNG-YING TSAI, HUNG-FANG HUANG, JEN-BING WON, MING-DER GER
  • Patent number: 9142376
    Abstract: A method for fabricating field emission cathode, a field emission cathode, and a field emission lighting source are provided. The method includes: forming a catalyst crystallite nucleus layer on the surface of cathode substrate by self-assembly of a noble metal catalyst, growing a composited nano carbon material on the cathode substrate by using a TCVD process, in which the composited nano carbon material includes coil carbon nano tubes and coil carbon nano fibers. The measured quantity of total coil carbon nano tubes and coil carbon nano fibers is higher than 40%. The field emission cathode is fabricated by the aforementioned method, and the field emission lighting source includes the aforementioned field emission cathode.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: September 22, 2015
    Assignee: NATIONAL DEFENSE UNIVERSITY
    Inventors: Ming-Der Ger, Nen-Wen Pu, Yih-Ming Liu, Kun-Ju Chung
  • Patent number: 9064669
    Abstract: A field emission cathode comprises at least one electron emitting parcel, and at least one ion absorbing parcel each being electrically connected with each of the at least one electron emitting parcel. The electron emitting parcel includes a first substrate and a nano emission component disposed on the first substrate for emitting electrons in an electric field. The ion absorbing parcel is constituted by a second substrate, in which the electric conductivity of the first substrate is less than that of the second substrate. A field emission light comprises the said field emission cathode, a field emission anode and a power supply. Thus the positive ions in an electric field can be absorbed by ion absorbing parcels to suppress an ion bombardment in the electric field. The efficiency of the electric field of the field emission is then maintained, and the lifetime of the field emission light is enhanced.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: June 23, 2015
    Assignee: NATIONAL DEFENSE UNIVERSITY
    Inventors: Yih-Ming Liu, Meng-Jey Youh, Nen-Wen Pu, Ming-Der Ger, Kevin Cheng, Kun-Ju Chung, Jhih-Cheng Jiang, Guan-Fang Xu
  • Patent number: 8999441
    Abstract: A preparing method for coiled nano carbon material is provided and includes forming a noble metal catalyst crystallite nucleus layer on the surface of the substrate by displacement of a noble metal catalyst, forming a composited nano carbon material on the metal layer of the substrate by using TCVD; in which the composited nano carbon material includes coiled carbon nano tubes and coiled carbon nano fiber. The measured quantity of the total coiled nano carbon tubes and coiled nano carbon fiber in the total measured quantity of nano carbon material is greater than 30%. The coiled nano carbon material can be acquired by scraping it off from the substrate surface.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 7, 2015
    Assignee: National Defense University
    Inventors: Yih-Ming Liu, Ming-Der Ger, Nen-Wen Pu, Kun-Ju Chung, Ming-Hsien Lin
  • Publication number: 20150015166
    Abstract: A field emission cathode comprises at least one electron emitting parcel, and at least one ion absorbing parcel each being electrically connected with each of the at least one electron emitting parcel. The electron emitting parcel includes a first substrate and a nano emission component disposed on the first substrate for emitting electrons in an electric field. The ion absorbing parcel is constituted by a second substrate, in which the electric conductivity of the first substrate is less than that of the second substrate. A field emission light comprises the said field emission cathode, a field emission anode and a power supply. Thus the positive ions in an electric field can be absorbed by ion absorbing parcels to suppress an ion bombardment in the electric field. The efficiency of the electric field of the field emission is then maintained, and the lifetime of the field emission light is enhanced.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventors: Yih-Ming LIU, Meng-Jey YOUH, Nen-Wen PU, Ming-Der GER, Kevin CHENG, Kun-Ju CHUNG, Jhih-Cheng JIANG, Guan-Fang XU
  • Publication number: 20140057097
    Abstract: A preparing method for coiled nano carbon material is provided and includes forming a noble metal catalyst crystallite nucleus layer on the surface of the substrate by displacement of a noble metal catalyst, forming a composited nano carbon material on the metal layer of the substrate by using TCVD; in which the composited nano carbon material includes coiled carbon nano tubes and coiled carbon nano fiber. The measured quantity of the total coiled nano carbon tubes and coiled nano carbon fiber in the total measured quantity of nano carbon material is greater than 30%. The coiled nano carbon material can be acquired by scraping it off from the substrate surface.
    Type: Application
    Filed: March 18, 2013
    Publication date: February 27, 2014
    Applicant: NATIONAL DEFENSE UNIVERSITY
    Inventors: YIH-MING LIU, MING-DER GER, NEN-WEN PU, KUN-JU CHUNG, MING-HSIEN LIN
  • Publication number: 20140055027
    Abstract: A method for fabricating field emission cathode, a field emission cathode, and a field emission lighting source are provided. The method includes: forming a catalyst crystallite nucleus layer on the surface of cathode substrate by self-assembly of a noble metal catalyst, growing a composited nano carbon material on the cathode substrate by using a TCVD process, in which the composited nano carbon material includes coil carbon nano tubes and coil carbon nano fibers. The measured quantity of total coil carbon nano tubes and coil carbon nano fibers is higher than 40%. The field emission cathode is fabricated by the aforementioned method, and the field emission lighting source includes the aforementioned field emission cathode.
    Type: Application
    Filed: March 20, 2013
    Publication date: February 27, 2014
    Applicant: National Defense University
    Inventors: MING-DER GER, NEN-WEN PU, YIH-MING LIU, KUN-JU CHUNG
  • Patent number: 8569392
    Abstract: Disclosed is a method for making absorbent for metal. In the method, at first, solution of first monomer and solution of second monomer are provided. Then, the solution of the second monomer is introduced into the solution of the first monomer. Finally, a microwave reaction is executed to provide micro-alls of absorbent for metal.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: October 29, 2013
    Assignee: Chung-Shan Institute of Science and Technology, Armaments Bureau, Ministry of National Defense
    Inventors: Yen-Chung Chen, Chih-kai Chang, Hsiou-Jeng Shy, Ching-Yu Tso, Jen-Bin Won, Ming-Der Ger
  • Patent number: 8420184
    Abstract: A method for preparing a surface modification coating of metal bipolar plates is disclosed, which comprises the following steps: providing a substrate; pre-treating the substrate by processing the substrate, depositing a Ni-layer on the substrate, or a combination thereof, to form an activated layer on the surface of the substrate; packing the substrate in a powder mixture containing a permeated master metal, an activator, and filler powder; and heat-treating the packing to allow the permeated master metal to diffuse into the activated layer and then to form a surface modification coating. The permeation rate of the permeated master metal can be increased due to the activated layer having a high defect concentration. Hence, it is possible to prepare a surface modification coating at a low temperature. The surface modification coating of the present invention can also decrease the interface contact resistance between the bipolar plates and gas diffusion layers.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: April 16, 2013
    Assignee: National Defense University
    Inventors: Ching-Yuan Bai, Min-Sheng Wu, Ming-Der Ger
  • Patent number: 8414799
    Abstract: A method for manufacturing graphene is disclosed, which comprises the following steps: putting graphite material and an organic solvent, a surfactant, or a combination thereof in a reaction tank and introducing a supercritical fluid in the reaction tank to allow the organic solvent, the surfactant, or the combination thereof to dissolve in the supercritical fluid and to permeate into the graphite material; and removing the supercritical fluid by depressurization to form graphene. The method of the present invention has simple steps and reduced consumption of manufacturing time, and also can promote the quality of the resultant graphene in large-scale manufacturing.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: April 9, 2013
    Assignee: National Defense University
    Inventors: Nen-Wen Pu, Chung An Wang, Yuh Sung, Ming-Der Ger
  • Publication number: 20130066030
    Abstract: Disclosed is a method for making absorbent for metal. In the method, at first, solution of first monomer and solution of second monomer are provided. Then, the solution of the second monomer is introduced into the solution of the first monomer. Finally, a microwave reaction is executed to provide micro-alls of absorbent for metal.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yen-Chung Chen, Chih-kai Chang, Hsiou-Jeng Shy, Ching-Yu Tso, Jen-Bin Won, Ming-Der Ger
  • Patent number: 8354138
    Abstract: A preparing method for coating polymethylmethacrylate (PMMA) particles with silicon dioxide is disclosed and includes the following steps of: preparing a silicon dioxide solution by mixing a silicon dioxide powder and a solvent; adding a dispersant-and-interface-modifier agent into the silicon dioxide solution; performing a wet grinding to the silicon dioxide solution with the dispersant-and-interface-modifier agent so as to obtain a plurality of nano-sized silicon dioxide particles with negative charge; performing an interface modification to a plurality of PMMA particles to be charged with positive charge; adding the PMMA particles into the silicon dioxide solution; making the PMMA particles adsorb the nano-sized silicon dioxide particles; and performing a solid-liquid separation process to the silicon dioxide solution so as to obtain the chemical composite particles.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: January 15, 2013
    Assignee: Chung-Shan Institute of Science and Technology, Armaments Bureau, Ministry of National Defense
    Inventors: Yen-Chung Chen, Hsiou-Jeng Shy, Ming-Der Ger, Hung-Fang Huang, Shang-Wanq Yeh
  • Patent number: 8323739
    Abstract: A method for forming a metal pattern on a substrate via printing and electroless plating is disclosed, which includes printing a pattern on the substrate with an ink composition, drying the printed pattern, and contacting the dried pattern with an electroless plating solution. The ink composition either contains components (i), (ii) and (iii), components (i) and (iv), or components (i) and (v), which are dissolved or dispersed in a solvent, wherein (i) is a binder; (ii) is a sulfate terminated polymer of an ethylenically unsaturated monomer; (iii) is a catalytic metal precursor; (iv) is a polymer of an ethylenically unsaturated monomer deposited with particles of catalytic metal; and (v) is a copolymer of an ethylenically unsaturated monomer and a hydrophilic monomer deposited with particles of catalytic metal. The binder (i) is a water swellable resin. The catalytic metal may be Au, Ag, Pd, Pt or Ru.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: December 4, 2012
    Assignee: National Defense University
    Inventors: Yuh Sung, Ming-Der Ger, Chang-Ping Chang, Chun-Chieh Tseng, Wen-Ding Chen
  • Patent number: 8318254
    Abstract: A copolymer deposited with particles of catalytic metal is disclosed in the present invention, which is formed from an ethylenically unsaturated monomer and a hydrophilic monomer, and the catalytic metal is Au, Ag, Pd, Pt or Ru. The copolymer is hydrophilic when the temperature is lower than a specific temperature, and will become hydrophobic when the temperature is greater than the specific temperature. The present invention also discloses a method for forming a metal layer on a substrate via electroless plating, which includes contacting the substrate with an ink composition, drying the ink composition on the substrate, and contacting the dried ink composition with an electroless plating solution, wherein the ink composition contains the copolymer of the present invention in an aqueous phase. The present invention further discloses a method for forming metal conductors in through holes of a substrate.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: November 27, 2012
    Assignee: National Defense University
    Inventors: Yuh Sung, Ming-Der Ger, Chang-Ping Chang, Chun-Chieh Tseng, Wen-Ding Chen
  • Publication number: 20120114870
    Abstract: The invention discloses a manufacturing method of a noble metal plating layer comprising the following steps: preparing a base material which is an alloy including a nickel base and at least one element with high oxidation valence on an object to be plated; soaking the object to be plated in a plating solution including pre-plating noble metal ions to make the element in the base material to be dissolved in the plating solution to obtain at least one ion with high oxidation valence; performing a chemical displacement reaction among the base material, the at least one ion having high oxidation valence, and the pre-plating noble metal ion in the plating solution to precipitate the pre-plating noble metal ion onto a surface of the object to be plated to form a noble metal plating layer.
    Type: Application
    Filed: April 2, 2011
    Publication date: May 10, 2012
    Applicant: NATIONAL DEFENSE UNIVERSITY
    Inventors: SUNG-YING TSAI, MING-DER GER, YUH SUNG, YANN-CHENG CHEN
  • Publication number: 20120094035
    Abstract: The present invention relates to a method for preparing plastic particles coated with metal, which comprises the following steps. First, mix a plurality of plastic particles with a tin/palladium solution to form a first mixed liquid. Alternatively, first mix the plurality of plastic particles with a stannous chloride/hydrochloric acid solution. Then mix the plurality of plastic particles adsorbing the plurality of stannous ions with a palladium chloride/hydrochloric acid solution and form the first mixed liquid. Next, microwave the first mixed liquid so that the tin/palladium colloidal particles coat the plastic particles and thus forming first metal particles. Afterwards, mix the first metal particles with an electroless nickel solution and form a second mixed liquid. Metal nickel then coats the first metal particles and forming a plurality of second metal particles.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Applicant: CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY, ARMAMENTS BUREAU, M.N.D.
    Inventors: Yen-Chung Chen, Ming-Der Ger, Jen-Bin Won, Hong-Fang Huang, Shang-Wang Yeh, Hsiou-Jeng Shy
  • Patent number: 8158049
    Abstract: Slag fiber is used to fabricate a friction material. Friction factor and abrasion loss of the friction material are controlled. The friction material can be used to make linings. Thus, slag fiber can be used as a replacement for natural material to make a friction material, and waste is thus recycled.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: April 17, 2012
    Assignee: Atomic Energy Council-Institute of Nuclear Energy Research
    Inventors: To-Mai Wang, Ming-Der Ger, Kung-Hsu Hou, Kin-Seng Sun, Wen-Cheng Lee, Sheng-Fu Yang, Chin-Ching Tzeng
  • Publication number: 20110315934
    Abstract: A graphite-vinyl ester resin composite conducting plate is prepared in the present invention. The conducting plate can be used as a bipolar plate for a fuel cell, counter electrode for dye-sensitized solar cell and electrode of vanadium redox battery. The conducting plate is prepared as follows: a) compounding vinyl ester resin and graphite powder to form a bulk molding compound (BMC) material, the graphite powder content ranging from 70 wt % to 95 wt % based on the total weight of the graphite powder and vinyl ester, wherein 0.01-15 wt % functionalized graphene, based on the weight of the vinyl ester resin, are added during the compounding; b) molding the BMC material from step a) to form a conducting plate having a desired shaped at 80-250° C. and 500-4000 psi.
    Type: Application
    Filed: September 28, 2010
    Publication date: December 29, 2011
    Applicant: National Tsing Hua University
    Inventors: Chen-Chi M. Ma, Min-Chien Hsiao, Shu-Hang Liao, Ming-Yu Yen, Ming-Der Ger, Chung-An Wang, Nen-Wen Pu, Yuh Sung, Chih-Chun Teng, Shie-Heng Lee, Min-Hsuan Hsiao
  • Publication number: 20110311432
    Abstract: A method for manufacturing graphene is disclosed, which comprises the following steps: putting graphite material and an organic solvent, a surfactant, or a combination thereof in a reaction tank and introducing a supercritical fluid in the reaction tank to allow the organic solvent, the surfactant, or the combination thereof to dissolve in the supercritical fluid and to permeate into the graphite material; and removing the supercritical fluid by depressurization to form graphene. The method of the present invention has simple steps and reduced consumption of manufacturing time, and also can promote the quality of the resultant graphene in large-scale manufacturing.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Inventors: Nen-Wen Pu, Chung An Wang, Yuh Sung, Ming-Der Ger
  • Publication number: 20110212319
    Abstract: The invention discloses a carbon nanotube device, comprising a substrate, a catalyst layer formed on the substrate, a porous capping layer formed on the catalyst layer, and a carbon nanotube formed on the porous capping layer. A wafer for growing a carbon nanotube comprises a substrate, a catalyst layer formed on the substrate, and a porous capping layer formed on the catalyst layer, with carbon nanotube growning on the porous capping layer.
    Type: Application
    Filed: April 26, 2011
    Publication date: September 1, 2011
    Inventors: LI-CHUN WANG, Han-Wen Kuo, Yuh Sung, Shiaw-Ruey Lin, Ming-Der Ger, Yih-Ming Liu, Wei-Ta Chang