Patents by Inventor Ming Hua

Ming Hua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147606
    Abstract: An electronic device includes a first substrate structure, multiple electronic elements and a second substrate structure. The first substrate structure includes a first substrate. The electronic elements are disposed on the first substrate. The second substrate structure is coupled to the first substrate structure. The second substrate structure includes a second substrate, a protection circuit, a driving circuit and a bonding pad. The protection circuit is disposed on the second substrate. The driving circuit is disposed on the second substrate and configured to drive at least a part of the electronic elements. The bonding pad is disposed on the second substrate. The protection circuit is respectively coupled to the bonding pad and the driving circuit. The electronic device may reduce the damage caused by electrostatic discharge or reduce the impact of the bonding process of the bonding pad on signal conduction.
    Type: Application
    Filed: September 14, 2023
    Publication date: May 2, 2024
    Applicant: Innolux Corporation
    Inventors: Mu-Fan Chang, Yi-Hua Hsu, Hung-Sheng Liao, Min-Hsin Lo, Ming-Chun Tseng, Ker-Yih Kao
  • Patent number: 11974479
    Abstract: An electrical connection structure is provided. The electrical connection structure includes a through hole, a first pad, a second pad and a conductive bridge. The through hole has a first end and a second end. The first pad at least partially surrounds the first end of the through hole and is electrically connected to a first circuit. The second pad is located at the second end of the through hole and is electrically connected to a second circuit. The conductive bridge is connected to the first pad and second pad through the through hole, thereby making the first and second circuits electrically connected to each other.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: April 30, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Shun-Yuan Hu, Chin-Lung Ting, Li-Wei Mao, Ming-Chun Tseng, Kung-Chen Kuo, Yi-Hua Hsu, Ker-Yih Kao
  • Patent number: 11969448
    Abstract: A probiotic composition for improving an effect of a chemotherapeutic drug of Gemcitabine on inhibiting pancreatic cancer is disclosed in the present disclosure. The probiotic composition comprises an effective amount of Lactobacillus paracasei GMNL-133, an effective amount of Lactobacillus reuteri GMNL-89, and a pharmaceutically acceptable carrier, wherein the Lactobacillus paracasei GMNL-133 was deposited in the China Center for Type Culture Collection on Sep. 26, 2011 under an accession number CCTCC NO. M 2011331, and the Lactobacillus reuteri GMNL-89 was deposited in the China Center for Type Culture Collection on Nov. 19, 2007 under an accession number CCTCC NO. M 207154. A method for improving the effect of the chemotherapeutic drug of Gemcitabine on inhibiting pancreatic cancer is further disclosed in the present disclosure.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: April 30, 2024
    Assignee: GENMONT BIOTECH INC.
    Inventors: Wan-Hua Tsai, I-ling Hsu, Shan-ju Hsu, Wen-ling Yeh, Ming-shiou Jan, Wee-wei Chieng, Li-jin Hsu, Ying-chun Lai
  • Publication number: 20240130923
    Abstract: An adaptive seat massage system and a method of controlling the same include a massage module providing a massage function in a plurality of regions of a seat; a pressure measurement module detecting pressure applied to the seat by a user in the regions of the seat and transmits pressure measurement signal corresponding to respective regions among the plurality of regions; and a control module determining whether to operate the massage module in at least one region based on the pressure measurement signal received from the pressure measurement module, determining, when the massage module is operated in the at least one region, an operating mode of the massage module in the at least one region based on the pressure measurement signal, and transmitting a control signal corresponding to the determined operating mode to the massage module to control an operation of the massage module in the at least one region.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 25, 2024
    Applicants: Hyundai Motor Company, Kia Corporation
    Inventors: Ming LI, Joo Hwan SON, Hai Yan ZHAO, Xiang Lai NIAN, Junshuai CAO, Shinjin KANG, Shi Hua WANG
  • Publication number: 20240134149
    Abstract: An imaging lens module with auto focus function includes an imaging lens assembly, an electromagnetic driving component assembly and a lens carrier. The imaging lens assembly has an optical axis. The electromagnetic driving component assembly drives the imaging lens assembly to move in a direction parallel to the optical axis by a Lorentz force. The imaging lens assembly is mounted to the lens carrier such that the imaging lens assembly can be wholly driven by the Lorentz force. The lens carrier includes an object-side part, a mounting structure and a plurality of plate portions. The object-side part includes a tip-end minimal aperture configured for light to travel through; and a tapered surface which surrounds an area tapered off from image side to object side. The mounting structure and the plate portions are configured for at least a part of the electromagnetic driving component assembly to be mounted thereto.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Applicant: LARGAN DIGITAL CO.,LTD.
    Inventors: Chun-Hua TSAI, Ming-Ta CHOU, Ming-Shun CHANG
  • Publication number: 20240135846
    Abstract: An electronic device and a manufacturing method thereof are provided. The manufacturing method of the electronic device includes the following. A substrate is provided. A plurality of electronic units are transferred to the substrate. The electronic units are inspected to obtain M first defect maps. The M first defect maps are integrated into N second defect maps, where N<M. M repairing groups are provided according to the N second defect maps. Each of the repairing groups includes at least one repairing electronic unit. The M repairing groups are transferred to the substrate. At least two of the repairing groups have the same location distribution of repairing electronic units, and the location distribution is consistent with a defect distribution of one of the second defect maps.
    Type: Application
    Filed: September 17, 2023
    Publication date: April 25, 2024
    Applicant: Innolux Corporation
    Inventors: Kai Cheng, Fang-Ying Lin, Ming-Chang Lin, Tsau-Hua Hsieh
  • Patent number: 11964428
    Abstract: The present invention provides a bottom plate of a resin tank for three-dimensional printing, which is manufactured through the following steps: substrate surface roughening step: treating the upper surface of a transparent substrate by using a plasma, or disposing a composite film on the upper surface of the transparent substrate to form a non-smooth surface structure having pores; substrate surface modification step: sequentially performing an activation treatment and a fluorination treatment on the upper surface of the transparent substrate; and stabilizer filling step: applying a stabilizer to the upper surface of the transparent substrate to fill the stabilizer penetrates into the pores on the upper surface of the transparent substrate. The low surface energy film reduces the adhesion of the hardened photosensitive material, and the stabilizer maintains the structure of the low surface energy film, so that the resin tank bottom plate has both oleophobic and hydrophobic properties.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: April 23, 2024
    Assignee: National Taiwan University of Science and Technology
    Inventors: Jeng-Ywan Jeng, Ming-Hua Ho, Ping-Hsun Tsai
  • Patent number: 11967553
    Abstract: The present disclosure provides a semiconductor package, including a first semiconductor structure, including an active region in a first substrate portion, wherein the active region includes at least one of a transistor, a diode, and a photodiode, a first bonding metallization over the first semiconductor structure, a first bonding dielectric over the first semiconductor structure, surrounding and directly contacting the first bonding metallization, a second semiconductor structure over a first portion of the first semiconductor structure, wherein the second semiconductor structure includes a conductive through silicon via, a second bonding dielectric at a back surface of the second semiconductor structure, a second bonding metallization surrounded by the second bonding dielectric and directly contacting the second bonding dielectric, and a conductive through via over a second portion of the first semiconductor structure different from the first portion.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ming-Fa Chen, Sung-Feng Yeh, Chen-Hua Yu
  • Patent number: 11961800
    Abstract: A method for forming a via in a semiconductor device and a semiconductor device including the via are disclosed. In an embodiment, the method may include bonding a first terminal and a second terminal of a first substrate to a third terminal and a fourth terminal of a second substrate; separating the first substrate to form a first component device and a second component device; forming a gap fill material over the first component device, the second component device, and the second substrate; forming a conductive via extending from a top surface of the gap fill material to a fifth terminal of the second substrate; and forming a top terminal over a top surface of the first component device, the top terminal connecting the first component device to the fifth terminal of the second substrate through the conductive via.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, An-Jhih Su, Chi-Hsi Wu, Wen-Chih Chiou, Tsang-Jiuh Wu, Der-Chyang Yeh, Ming Shih Yeh
  • Patent number: 11961791
    Abstract: A device includes a redistribution line, and a polymer region molded over the redistribution line. The polymer region includes a first flat top surface. A conductive region is disposed in the polymer region and electrically coupled to the redistribution line. The conductive region includes a second flat top surface not higher than the first flat top surface.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wen Hsiao, Ming-Da Cheng, Chih-Wei Lin, Chen-Shien Chen, Chih-Hua Chen, Chen-Cheng Kuo
  • Patent number: 11953052
    Abstract: A fastener is adapted for assembling a first housing to a second housing. The first housing is provided with a protruding portion and a buckling portion, and the second housing has a first surface, a second surface, and a through hole. The fastener includes a first portion, at least one connecting portion, at least two elastic portions, and a second portion. The first portion movably abuts against the first surface and has a first opening. The connecting portion is accommodated in the through hole. One end of the connecting portion is connected to the first portion. The connecting portion is spaced apart from an inner edge of the second housing by a gap. The two elastic portions inclinedly extend into the first opening. The second portion movably abuts against the second surface and is disposed at the another end of the connecting portion.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: April 9, 2024
    Assignee: PEGATRON CORPORATION
    Inventors: Jian-Hua Chen, Po-Tsung Shih, Yu-Wei Lin, Ming-Hua Ho, Chih-Hao Wu
  • Patent number: 11955460
    Abstract: In accordance with some embodiments, a package-on-package (PoP) structure includes a first semiconductor package having a first side and a second side opposing the first side, a second semiconductor package having a first side and a second side opposing the first side, and a plurality of inter-package connector coupled between the first side of the first semiconductor package and the first side of the second semiconductor package. The PoP structure further includes a first molding material on the second side of the first semiconductor package. The second side of the second semiconductor package is substantially free of the first molding material.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Da Tsai, Meng-Tse Chen, Sheng-Feng Weng, Sheng-Hsiang Chiu, Wei-Hung Lin, Ming-Da Cheng, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20240113205
    Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin in an n-type Fin Field-Effect (FinFET) region and a p-type FinFET region, respectively, forming a first dielectric fin and a second dielectric fin in the n-type FinFET region and the p-type FinFET region, respectively, forming a first epitaxy mask to cover the second semiconductor fin and the second dielectric fin, performing a first epitaxy process to form an n-type epitaxy region based on the first semiconductor fin, removing the first epitaxy mask, forming a second epitaxy mask to cover the n-type epitaxy region and the first dielectric fin, performing a second epitaxy process to form a p-type epitaxy region based on the second semiconductor fin, and removing the second epitaxy mask. After the second epitaxy mask is removed, a portion of the second epitaxy mask is left on the first dielectric fin.
    Type: Application
    Filed: November 28, 2023
    Publication date: April 4, 2024
    Inventors: Chih-Chiang Chang, Ming-Hua Yu, Li-Li Su
  • Publication number: 20240113032
    Abstract: Interconnect structure packages (e.g., through silicon vias (TSV) packages, through interlayer via (TIV) packages) may be pre-manufactured as opposed to forming TIVs directly on a carrier substrate during a manufacturing process for a semiconductor die package at backend packaging facility. The interconnect structure packages may be placed onto a carrier substrate during manufacturing of a semiconductor device package, and a semiconductor die package may be placed on the carrier substrate adjacent to the interconnect structure packages. A molding compound layer may be formed around and in between the interconnect structure packages and the semiconductor die package.
    Type: Application
    Filed: April 25, 2023
    Publication date: April 4, 2024
    Inventors: Kai-Fung CHANG, Chin-Wei LIANG, Sheng-Feng WENG, Ming-Yu YEN, Cheyu LIU, Hung-Chih CHEN, Yi-Yang LEI, Ching-Hua HSIEH
  • Publication number: 20240113112
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Patent number: 11948971
    Abstract: A method includes forming isolations extending into a semiconductor substrate, recessing the isolation regions, wherein a semiconductor region between the isolation regions forms a semiconductor fin, forming a first dielectric layer on the isolation regions and the semiconductor fin, forming a second dielectric layer over the first dielectric layer, planarizing the second dielectric layer and the first dielectric layer, and recessing the first dielectric layer. A portion of the second dielectric layer protrudes higher than remaining portions of the first dielectric layer to form a protruding dielectric fin. A portion of the semiconductor fin protrudes higher than the remaining portions of the first dielectric layer to form a protruding semiconductor fin. A portion of the protruding semiconductor fin is recessed to form a recess, from which an epitaxy semiconductor region is grown. The epitaxy semiconductor region expands laterally to contact a sidewall of the protruding dielectric fin.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Wei Yu, Tsz-Mei Kwok, Tsung-Hsi Yang, Li-Wei Chou, Ming-Hua Yu
  • Publication number: 20240105632
    Abstract: A device includes an interposer, which includes a substrate having a top surface. An interconnect structure is formed over the top surface of the substrate, wherein the interconnect structure includes at least one dielectric layer, and metal features in the at least one dielectric layer. A plurality of through-substrate vias (TSVs) is in the substrate and electrically coupled to the interconnect structure. A first die is over and bonded onto the interposer. A second die is bonded onto the interposer, wherein the second die is under the interconnect structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Inventors: Hsien-Pin Hu, Chen-Hua Yu, Ming-Fa Chen, Jing-Cheng Lin, Jiun Ren Lai, Yung-Chi Lin
  • Patent number: 11942433
    Abstract: In an embodiment, a structure includes: a first integrated circuit die including first die connectors; a first dielectric layer on the first die connectors; first conductive vias extending through the first dielectric layer, the first conductive vias connected to a first subset of the first die connectors; a second integrated circuit die bonded to a second subset of the first die connectors with first reflowable connectors; a first encapsulant surrounding the second integrated circuit die and the first conductive vias, the first encapsulant and the first integrated circuit die being laterally coterminous; second conductive vias adjacent the first integrated circuit die; a second encapsulant surrounding the second conductive vias, the first encapsulant, and the first integrated circuit die; and a first redistribution structure including first redistribution lines, the first redistribution lines connected to the first conductive vias and the second conductive vias.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Jen-Fu Liu, Ming Hung Tseng, Tsung-Hsien Chiang, Yen-Liang Lin, Tzu-Sung Huang
  • Publication number: 20240096784
    Abstract: Some embodiments of the present disclosure relate to an integrated chip including an extended via that spans a combined height of a wire and a via and that has a smaller footprint than the wire. The extended via may replace a wire and an adjoining via at locations where the sizing and the spacing of the wire are reaching lower limits. Because the extended via has a smaller footprint than the wire, replacing the wire and the adjoining via with the extended via relaxes spacing and allows the size of the pixel to be further reduced. The extended via finds application for capacitor arrays used for pixel circuits.
    Type: Application
    Filed: January 3, 2023
    Publication date: March 21, 2024
    Inventors: Meng-Hsien Lin, Hsing-Chih Lin, Ming-Tsong Wang, Min-Feng Kao, Kuan-Hua Lin, Jen-Cheng Liu, Dun-Nian Yaung, Ko Chun Liu
  • Publication number: 20240096847
    Abstract: A method includes putting a first package component into contact with a second package component. The first package component comprises a first dielectric layer including a first dielectric material, and the first dielectric material is a silicon-oxide-based dielectric material. The second package component includes a second dielectric layer including a second dielectric material different from the first dielectric material. The second dielectric material comprises silicon and an element selected from the group consisting of carbon, nitrogen, and combinations thereof. An annealing process is performed to bond the first dielectric layer to the second dielectric layer.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Ku-Feng Yang, Ming-Tsu Chung