Patents by Inventor Ming-Hua Lo

Ming-Hua Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230378003
    Abstract: In a method, a structure including two or more materials having different coefficients of thermal expansion is prepared, and the structure is subjected to a cryogenic treatment. In one or more of the foregoing and following embodiments, the structure includes a semiconductor wafer and one or more layers are formed on the semiconductor wafer.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Li-Chao YIN, Hung-Bin LIN, Hsin-Hsien WU, Chih-Ming KE, Chyi Shyuan CHERN, Ming-Hua LO
  • Publication number: 20210217670
    Abstract: In a method, a structure including two or more materials having different coefficients of thermal expansion is prepared, and the structure is subjected to a cryogenic treatment. In one or more of the foregoing and following embodiments, the structure includes a semiconductor wafer and one or more layers are formed on the semiconductor wafer.
    Type: Application
    Filed: October 30, 2020
    Publication date: July 15, 2021
    Inventors: Li-Chao Yin, Hung-Bin Lin, Hsin-Hsien Wu, Chih-Ming Ke, Chyi Shyuan Chern, Ming-Hua Lo
  • Patent number: 9312432
    Abstract: The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a light-emitting diode (LED) die. The LED die is a vertical LED die in some embodiments. The LED die includes a substrate. A p-doped III-V compound layer and an n-doped III-V compound layer are each disposed over the substrate. A multiple quantum well (MQW) layer is disposed between the p-doped III-V compound layer and the n-doped III-V compound layer. The p-doped III-V compound layer includes a first region having a non-exponential doping concentration characteristic and a second region having an exponential doping concentration characteristic. In some embodiments, the second region is formed using a lower pressure than the first region.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 12, 2016
    Assignee: TSMC SOLID STATE LIGHTING LTD.
    Inventors: Ming-Hua Lo, Zhen-Yu Li, Hsing-Kuo Hsia, Hao-Chung Kuo
  • Patent number: 9000455
    Abstract: A shadow mask assembly includes a securing assembly configured to hold a substrate that is configured to hold a plurality of dies. The securing assembly includes a number of guide pins and a shadow mask comprising holes for the guide pins, said holes allowing the guide pins freedom of motion in one direction. The securing assembly includes a number of embedded magnets configured to secure the shadow mask to the securing assembly.
    Type: Grant
    Filed: March 10, 2013
    Date of Patent: April 7, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Ming-Shing Lee, Chyi-Shyuan Chern, Hsin-Hsien Wu, Yung-Chang Chen, Ming-Hua Lo, Chu-Ching Tsai
  • Publication number: 20140252380
    Abstract: A shadow mask assembly includes a securing assembly configured to hold a substrate that is configured to hold a plurality of dies. The securing assembly includes a number of guide pins and a shadow mask comprising holes for the guide pins, said holes allowing the guide pins freedom of motion in one direction. The securing assembly includes a number of embedded magnets configured to secure the shadow mask to the securing assembly.
    Type: Application
    Filed: March 10, 2013
    Publication date: September 11, 2014
    Applicant: TSMC Solid State Lighting Ltd.
    Inventors: Ming-Shing Lee, Chyi-Shyuan Chern, Hsin-Hsien Wu, Yung-Chang Chen, Ming-Hua Lo, Chu-Ching Tsai
  • Publication number: 20130240831
    Abstract: The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a light-emitting diode (LED) die. The LED die is a vertical LED die in some embodiments. The LED die includes a substrate. A p-doped III-V compound layer and an n-doped III-V compound layer are each disposed over the substrate. A multiple quantum well (MQW) layer is disposed between the p-doped III-V compound layer and the n-doped III-V compound layer. The p-doped III-V compound layer includes a first region having a non-exponential doping concentration characteristic and a second region having an exponential doping concentration characteristic. In some embodiments, the second region is formed using a lower pressure than the first region.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: TSMC Solid State Lighting, Ltd.
    Inventors: Ming-Hua Lo, Zhen-Yu Li, Hsing-Kuo Hsia, Hao-Chung Kuo
  • Patent number: 8501597
    Abstract: A method of fabricating a group III-nitride semiconductor includes the following steps of: forming a first patterned mask layer with a plurality of first openings deposited on an epitaxial substrate; epitaxially growing a group III-nitride semiconductor layer over the epitaxial substrate and covering at least part of the first patterned mask layer; etching the group III-nitride semiconductor layer to form a plurality of second openings, which are substantially at least partially aligned with the first openings; and epitaxially growing the group III-nitride semiconductor layer again.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: August 6, 2013
    Assignee: Academia Sinica
    Inventors: Yuh-Jen Cheng, Ming-Hua Lo, Hao-Chung Kuo
  • Patent number: 8450190
    Abstract: Defect selective passivation in semiconductor fabrication for reducing defects.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: May 28, 2013
    Assignee: Academia Sinica
    Inventors: Yuh-Jen Cheng, Ming-Hua Lo, Hao-chung Kuo
  • Patent number: 8133803
    Abstract: A method for fabricating a semiconductor layer comprising: a) growing a semiconductor layer on a foreign substrate; b) forming at least one opening on the semiconductor layer, wherein the opening exposes the interface between the semiconductor layer and the foreign substrate; and c) removing at least part of the semiconductor solid state material along the interface between the semiconductor layer and the foreign substrate. The removing step c) is preferably achieved by selective interfacial chemical etching. The semiconductor layer may be utilized as a substrate for fabrication of a wide variety of electronic and opto-electronic devices and integrated circuitry products.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: March 13, 2012
    Assignee: Academia Sinica
    Inventors: Yuh-Jen Cheng, Ming-Hua Lo, Hao-Chung Kuo
  • Publication number: 20120028446
    Abstract: A method of fabricating a group III-nitride semiconductor includes the following steps of forming a first patterned mask layer with a plurality of first openings deposited on an epitaxial substrate; epitaxially growing a group III-nitride semiconductor layer over the epitaxial substrate and covering at least part of the first patterned mask layer; etching the group III-nitride semiconductor layer to form a plurality of second openings, which are substantially at least partially aligned with the first openings; and epitaxially growing the group III-nitride semiconductor layer again.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 2, 2012
    Inventors: Yuh-Jen CHENG, Ming-Hua Lo, Hao-Chung Kuo
  • Publication number: 20110233519
    Abstract: Defect selective passivation in semiconductor fabrication for reducing defects.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 29, 2011
    Applicant: ACADEMIA SINICA
    Inventors: Yuh-Jen Cheng, Ming-Hua Lo, Hao-chung Kuo
  • Publication number: 20100323506
    Abstract: A method for fabricating a semiconductor layer comprising: a) growing a semiconductor layer on a foreign substrate; b) forming at least one opening on the semiconductor layer, wherein the opening exposes the interface between the semiconductor layer and the foreign substrate; and c) removing at least part of the semiconductor solid state material along the interface between the semiconductor layer and the foreign substrate. The removing step c) is preferably achieved by selective interfacial chemical etching. The semiconductor layer may be utilized as a substrate for fabrication of a wide variety of electronic and opto-electronic devices and integrated circuitry products.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Inventors: Yuh-Jen Cheng, Ming-Hua Lo, Hao-Chung Kuo