Patents by Inventor Ming-Hua Tsai

Ming-Hua Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12342599
    Abstract: A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
    Type: Grant
    Filed: June 28, 2024
    Date of Patent: June 24, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Jung Han, Ming-Chi Li, Chih-Mou Lin, Yu-Hsiang Hung, Yu-Hsiang Lin, Tzu-Lang Shih
  • Publication number: 20250204007
    Abstract: The invention provides a semiconductor structure, which comprises a substrate, a high-voltage device region is defined on the substrate, in the high-voltage device region, the substrate comprises a first region, a first groove surrounds the first region, and a second region surrounds the first groove, and a contact gate structure is located in the high-voltage device region, when viewed from a top view, the contact gate structure comprises a plurality of columnar dielectric layers arranged in an array.
    Type: Application
    Filed: January 16, 2024
    Publication date: June 19, 2025
    Applicant: United Microelectronics Corp.
    Inventors: Chun-Wen Cheng, Ming-Hua Tsai, Chun-Lin Chen, Ming-Hsiang Tu, Ya-Hsin Huang, Yung-Fang Yang
  • Patent number: 12336208
    Abstract: A fabricating method of a middle voltage transistor includes providing a substrate. A gate predetermined region is defined on the substrate. Next, a mask layer is formed to cover only part of the gate predetermined region. Then, a first ion implantation process is performed to implant dopants into the substrate at two sides of the mask layer to form two first lightly doping regions. After removing the mask layer, a gate is formed to overlap the entirety gate predetermined region. Subsequently, two second lightly doping regions respectively formed within one of the first lightly doping regions. Next, two source/drain doping regions are respectively formed within one of the second lightly doping regions. Finally, two silicide layers are formed to respectively cover one of the source/drain doping regions.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: June 17, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hsuan Chang, Hao-Ping Yan, Ming-Hua Tsai, Chin-Chia Kuo
  • Publication number: 20250120161
    Abstract: A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
    Type: Application
    Filed: December 17, 2024
    Publication date: April 10, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Jung Han, Ming-Chi Li, Chih-Mou Lin, Yu-Hsiang Hung, Yu-Hsiang Lin, Tzu-Lang Shih
  • Publication number: 20250056868
    Abstract: A method of fabricating a semiconductor device is provided. Recesses are formed in a substrate. A first gate dielectric material is formed on the substrate and filled in the recesses. The first gate dielectric material on the substrate between the recesses is at least partially removed to form a trench. A second gate dielectric material is formed in the trench. A gate conductive layer is formed on the second gate dielectric material. Spacers are formed on sidewalls of the gate conductive layer. A portion of the first gate dielectric material is removed. The remaining first gate dielectric material and the second gate dielectric layer form a gate dielectric layer. The gate dielectric layer includes a body part and a first hump part at a first edge of the body part. The first hump part is thicker than the body part. Doped regions are formed in the substrate beside the spacers.
    Type: Application
    Filed: September 4, 2023
    Publication date: February 13, 2025
    Applicant: United Microelectronics Corp.
    Inventors: Ming-Hua Tsai, Wei Hsuan Chang, Chin-Chia Kuo
  • Patent number: 12211915
    Abstract: A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
    Type: Grant
    Filed: March 1, 2023
    Date of Patent: January 28, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Jung Han, Ming-Chi Li, Chih-Mou Lin, Yu-Hsiang Hung, Yu-Hsiang Lin, Tzu-Lang Shih
  • Publication number: 20250015161
    Abstract: A semiconductor device includes a substrate; a channel region disposed in the substrate; and a diffusion region disposed in the substrate on a side of the channel region. The diffusion region comprises a LDD region and a heavily doped region within the LDD region. A gate electrode is disposed over the channel region. The gate electrode partially overlaps with the LDD region. A spacer is disposed on a sidewall of the gate electrode. A gate oxide layer is disposed between the gate electrode and the channel region, between the gate electrode and the LDD region, and between the spacer and the LDD region. A silicide layer is disposed on the heavily doped region and is spaced apart from the edge of the spacer.
    Type: Application
    Filed: August 24, 2023
    Publication date: January 9, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hsuan Chang, Ming-Hua Tsai, Chin-Chia Kuo
  • Publication number: 20240355894
    Abstract: A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
    Type: Application
    Filed: June 28, 2024
    Publication date: October 24, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Jung Han, Ming-Chi Li, Chih-Mou Lin, Yu-Hsiang Hung, Yu-Hsiang Lin, Tzu-Lang Shih
  • Publication number: 20240266435
    Abstract: A transistor with an embedded insulating structure set includes a substrate. A gate is disposed on the substrate. A first lightly doped region is disposed at one side of the gate. A second lightly doped region is disposed at another side of the gate. The first lightly doped region and the second lightly doped region have the same conductive type. The first lightly doped region is symmetrical to the second lightly doped region. A first source/drain doped region is disposed within the first lightly doped region. A second source/drain doped region is disposed within the second lightly doped region. A first insulating structure set is disposed within the first lightly doped region and the first source/drain doped region. The first insulating structure set includes an insulating block embedded within the substrate. A sidewall of the insulating block contacts the gate dielectric layer.
    Type: Application
    Filed: March 13, 2023
    Publication date: August 8, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Chin-Chia Kuo, Wei-Hsuan Chang
  • Patent number: 12057483
    Abstract: A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: August 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Jung Han, Ming-Chi Li, Chih-Mou Lin, Yu-Hsiang Hung, Yu-Hsiang Lin, Tzu-Lang Shih
  • Publication number: 20240234572
    Abstract: An extended drain metal oxide semiconductor transistor includes a substrate. A gate is disposed on the substrate. A source doped region is disposed in the substrate at one side of the gate. A drain doped region is disposed in the substrate at another side of the gate. A thin gate dielectric layer is disposed under the gate. A thick gate dielectric layer is disposed under the gate. The thick gate dielectric layer extends from the bottom of the gate to contact the drain doped region. A second conductive type first well is disposed in the substrate and surrounds the source doped region and the drain doped region. A deep well is disposed within the substrate and surrounds the second conductive type first well.
    Type: Application
    Filed: February 10, 2023
    Publication date: July 11, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Liang-An Huang, Ming-Hua Tsai, Wen-Fang Lee, Chin-Chia Kuo, Jung Han, Chun-Lin Chen, Ching-Chung Yang, Nien-Chung Li
  • Publication number: 20240222455
    Abstract: A high-voltage transistor includes a well region disposed in a semiconductor substrate, a gate structure disposed above the well region, a gate oxide layer disposed between the gate structure and the well region, a first drift region, and a second drift region. A first portion of the gate oxide layer is thicker than a second portion of the gate oxide layer. A thickness of the second portion is greater than or equal to one eighth of a thickness of the first portion. The first drift region and the second drift region are disposed in the well region, at least partially located at two opposite sides of the gate structure, respectively, and disposed adjacent to the first portion and the second portion, respectively. A conductivity type of the first drift region is identical to that of the second drift region. A level-up shifting circuit includes the high-voltage transistor described above.
    Type: Application
    Filed: February 9, 2023
    Publication date: July 4, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hsuan Chang, Ming-Hua Tsai, Chin-Chia Kuo
  • Publication number: 20240038684
    Abstract: A semiconductor structure including a substrate and protection structures is provided. The substrate includes a die region. The die region includes corner regions. The protection structures are located in the corner region. Each of the protection structures has a square top-view pattern. The square top-view patterns located in the same corner region have various sizes.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 1, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Ming-Hua Tsai, Hao Ping Yan, Chin-Chia Kuo, Wei Hsuan Chang
  • Publication number: 20230335609
    Abstract: The invention provides a transistor structure and a manufacturing method thereof. The transistor structure includes a substrate, a first gate, a second gate, a first gate dielectric layer, and a second gate dielectric layer. The first gate and the second gate are located on the substrate. The first gate dielectric layer is located between the first gate and the substrate. The first gate dielectric layer has a single thickness. The second gate dielectric layer is located between the second gate and the substrate. The second gate dielectric layer has a plurality of thicknesses. A maximum thickness of the first gate dielectric layer is the same as a maximum thickness of the second gate dielectric layer. The transistor structure may reduce process complexity.
    Type: Application
    Filed: May 3, 2022
    Publication date: October 19, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Ming-Hua Tsai, Wei Hsuan Chang, Chin-Chia Kuo
  • Publication number: 20230261092
    Abstract: A fabricating method of a middle voltage transistor includes providing a substrate. A gate predetermined region is defined on the substrate. Next, a mask layer is formed to cover only part of the gate predetermined region. Then, a first ion implantation process is performed to implant dopants into the substrate at two sides of the mask layer to form two first lightly doping regions. After removing the mask layer, a gate is formed to overlap the entirety gate predetermined region. Subsequently, two second lightly doping regions respectively formed within one of the first lightly doping regions. Next, two source/drain doping regions are respectively formed within one of the second lightly doping regions. Finally, two silicide layers are formed to respectively cover one of the source/drain doping regions.
    Type: Application
    Filed: March 15, 2022
    Publication date: August 17, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hsuan Chang, Hao-Ping Yan, Ming-Hua Tsai, Chin-Chia Kuo
  • Publication number: 20230207647
    Abstract: A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
    Type: Application
    Filed: March 1, 2023
    Publication date: June 29, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Jung Han, Ming-Chi Li, Chih-Mou Lin, Yu-Hsiang Hung, Yu-Hsiang Lin, Tzu-Lang Shih
  • Patent number: 11626500
    Abstract: A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 11, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Jung Han, Ming-Chi Li, Chih-Mou Lin, Yu-Hsiang Hung, Yu-Hsiang Lin, Tzu-Lang Shih
  • Publication number: 20230105690
    Abstract: A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hua Tsai, Jung Han, Ming-Chi Li, Chih-Mou Lin, Yu-Hsiang Hung, Yu-Hsiang Lin, Tzu-Lang Shih
  • Patent number: 11569380
    Abstract: A semiconductor structure is provided, and the semiconductor structure includes a substrate, and an active area is defined thereon, a gate structure spanning the active area, wherein the overlapping range of the gate structure and the active area is defined as an overlapping region, and the overlapping region includes four corners, and at least one salicide block covering the four corners of the overlapping region.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 31, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hsuan Chang, Ming-Hua Tsai, Chin-Chia Kuo
  • Publication number: 20230006062
    Abstract: A semiconductor structure is provided, and the semiconductor structure includes a substrate, and an active area is defined thereon, a gate structure spanning the active area, wherein the overlapping range of the gate structure and the active area is defined as an overlapping region, and the overlapping region includes four corners, and at least one salicide block covering the four corners of the overlapping region.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 5, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hsuan Chang, Ming-Hua Tsai, Chin-Chia Kuo