Patents by Inventor Ming-Hui Chih

Ming-Hui Chih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12159092
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Grant
    Filed: July 26, 2023
    Date of Patent: December 3, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau
  • Publication number: 20230367942
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Chia-Ping CHIANG, Ming-Hui CHIH, Chih-Wei HSU, Ping-Chieh WU, Ya-Ting CHANG, Tsung-Yu WANG, Wen-Li CHENG, Hui En YIN, Wen-Chun HUANG, Ru-Gun LIU, Tsai-Sheng GAU
  • Patent number: 11790145
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau
  • Publication number: 20220335192
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 20, 2022
    Inventors: Chia-Ping CHIANG, Ming-Hui CHIH, Chih-Wei HSU, Ping-Chieh WU, Ya-Ting CHANG, Tsung-Yu WANG, Wen-Li CHENG, Hui En YIN, Wen-Chun HUANG, Ru-Gun LIU, Tsai-Sheng GAU
  • Patent number: 11392742
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 11048161
    Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: June 29, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
  • Publication number: 20210019464
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventors: Chia-Ping CHIANG, Ming-Hui CHIH, Chih-Wei HSU, Ping-Chieh WU, Ya-Ting CHANG, Tsung-Yu WANG, Wen-Li CHENG, Hui En YIN, Wen-Chun HUANG, Ru-Gun LIU, Tsai-Sheng GAU
  • Patent number: 10860774
    Abstract: The present disclosure relates to a method of data preparation. The method, in some embodiments, performs a first data preparation process using a data preparation element. The first data preparation process modifies a plurality of shapes of an integrated chip (IC) design that comprises a graphical representation of a layout used to fabricate an integrated chip. A plurality of additional shapes are added to the IC design using an additional shape insertion element. The plurality of additional shapes are separated from the plurality of shapes by one or more non-zero distances. A second data preparation process is performed using the data preparation element, after performing the first data preparation process. The second data preparation process modifies the plurality of additional shapes.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 10796055
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 6, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau
  • Publication number: 20200142294
    Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
  • Publication number: 20200050725
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Chia-Ping CHIANG, Ming-Hui CHIH, Chih-Wei HSU, Ping-Chieh WU, Ya-Ting CHANG, Tsung-Yu WANG, Wen-Li CHENG, Hui En YIN, Wen-Chun HUANG, Ru-Gun LIU, Tsai-Sheng GAU
  • Patent number: 10527928
    Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: January 7, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
  • Patent number: 10509881
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 10324369
    Abstract: Embodiments of the present disclosure provide a method of generating mandrel patterns. A mandrel pattern is generated by constructing a boundary box, initiating a plurality of lead mandrels, and extending the lead mandrels across the boundary box. When a pattern region includes holes, portions of mandrels are removed from the holes after extension of the leading mandrels.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: June 18, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Yu Wang, Nian-Fuh Cheng, Chia-Ping Chiang, Ming-Hui Chih, Wen-Chun Huang, Tsai-Sheng Gau
  • Publication number: 20190095569
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: CHIA-PING CHIANG, MING-HUI CHIH, CHIH-WEI HSU, PING-CHIEH WU, YA-TING CHANG, TSUNG-YU WANG, WEN-LI CHENG, HUI EN YIN, WEN-CHUN HUANG, RU-GUN LIU, TSAI-SHENG GAU
  • Publication number: 20190064652
    Abstract: Embodiments of the present disclosure provide a method of generating mandrel patterns. A mandrel pattern is generated by constructing a boundary box, initiating a plurality of lead mandrels, and extending the lead mandrels across the boundary box. When a pattern region includes holes, portions of mandrels are removed from the holes after extension of the leading mandrels.
    Type: Application
    Filed: August 25, 2017
    Publication date: February 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Yu Wang, Nian-Fuh Cheng, Chia-Ping Chiang, Ming-Hui Chih, Wen-Chun Huang, Tsai-Sheng Gau
  • Publication number: 20180349545
    Abstract: The present disclosure relates to a method of data preparation. The method, in some embodiments, performs a first data preparation process using a data preparation element. The first data preparation process modifies a plurality of shapes of an integrated chip (IC) design that comprises a graphical representation of a layout used to fabricate an integrated chip. A plurality of additional shapes are added to the IC design using an additional shape insertion element. The plurality of additional shapes are separated from the plurality of shapes by one or more non-zero distances. A second data preparation process is performed using the data preparation element, after performing the first data preparation process. The second data preparation process modifies the plurality of additional shapes.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 6, 2018
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 10049178
    Abstract: The present disclosure relates to a method of improving pattern density with a low OPC (optical proximity correction) cycle time, and an associated apparatus. In some embodiments, the method is performed by performing an initial data preparation process on an IC design including a graphical representation of a layout used to fabricate an integrated chip. The initial data preparation process is performed by using a data preparation element to generate a modified IC design having modified shapes that are modified forms of shapes within the IC design. One or more low-pattern-density areas of the modified IC design are identified using a local density checking element. One or more dummy shapes are added within the one or more low-pattern-density areas using a dummy shape insertion element. The one or more dummy shapes are separated from the modified shapes by a non-zero space.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 10036948
    Abstract: The present disclosure provides a method of performing optical proximity correction (OPC). An integrated circuit (IC) design layout is received. The design layout contains a plurality of IC layout patterns. Two or more of the plurality of IC layout patterns are grouped together. The grouped IC layout patterns are dissected, or target points are set for the grouped IC layout patterns. Thereafter, an OPC process is performed based on the grouped IC layout patterns.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: July 31, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Li Cheng, Ming-Hui Chih, Ru-Gun Liu, Wen-Chun Huang
  • Publication number: 20180173090
    Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.
    Type: Application
    Filed: July 19, 2017
    Publication date: June 21, 2018
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang