Patents by Inventor Ming-Jhe Lin

Ming-Jhe Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250043136
    Abstract: A novel rheology modifier which comprises a quaternary ammonium containing polyamide for use in aqueous paint, and that can provide excellent pigment suspension and rheological properties to the aqueous based coating without being affected by pH fluctuation.
    Type: Application
    Filed: July 24, 2023
    Publication date: February 6, 2025
    Applicant: ELEMENTIS SPECIALTIES, INC.
    Inventors: Chun-Hung Yen, Wei-Jen Huang, Ming-Jhe Li, Yu-Lun Hung, Hou-Jen Yen, Yu-Yen Lu, Yu-Zhe Su, Hung-Yi Lin
  • Patent number: 12216326
    Abstract: An optical member driving mechanism for connecting an optical member is provided, including a fixed portion and a first adhesive member. The fixed portion includes a first member and a second member, wherein the first member is fixedly connected to the second member via the first adhesive member.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: February 4, 2025
    Assignee: TDK TAIWAN CORP.
    Inventors: Hsiang-Chin Lin, Shou-Jen Liu, Guan-Bo Wang, Kai-Po Fan, Chan-Jung Hsu, Shao-Chung Chang, Shih-Wei Hung, Ming-Chun Hsieh, Wei-Pin Chin, Sheng-Zong Chen, Yu-Huai Liao, Sin-Hong Lin, Wei-Jhe Shen, Tzu-Yu Chang, Kun-Shih Lin, Che-Hsiang Chiu, Sin-Jhong Song
  • Patent number: 8288850
    Abstract: A method for packaging micromachined devices fabricated by MEMS and semiconductor process is disclosed in this invention. The method employed etching technique to etch a trench surrounding the micromachined components on each chip of the first wafer down to the bottom interconnection metal layer. The said trench can accommodate the solder of flip-chip packaging. On each chip of the second wafer, or called as the second chip, a surrounding copper pillar wall corresponding to the trench on the first chip is deposited. By wafer-level packaging, the trench on the first chip is aligned to the pillar wall, and then bonded together with elevated temperature. The face-to-face chamber formed between two chips can allow the movement of the micromachined structures. Further, the signal or power connections between two chips can be established by providing several discrete pillar bumps.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 16, 2012
    Assignee: Jung-Tang Huang
    Inventors: Jung-Tang Huang, Ming-Jhe Lin, Hou-Jun Hsu
  • Publication number: 20110115035
    Abstract: This invention disclosed a method to strengthen structure and enhance sensitivity for CMOS-MEMS micro-machined devices which include micro-motion sensor, micro-actuator and RF switch. The steps of the said method contain defining deposited region by metal and passivation layer, forming a cavity for depositing metal structure by lithography process, depositing metal structure on the top metal layer of micromachined structure by Electroless plating, polishing process and etching process. The method aims at strengthening structures and minimizing CMOS-MEMS device size. Furthermore, this method can also be applied to inertia sensors such as accelerometer or gyroscope, which can enhance sensitivity and capacitive value, and deal with curl issues for suspended CMOS-MEMS devices.
    Type: Application
    Filed: September 13, 2010
    Publication date: May 19, 2011
    Inventors: Jung-Tang Huang, Ming-Jhe Lin, Hou-Jun Hsu
  • Publication number: 20110018113
    Abstract: A method for packaging micromachined devices fabricated by MEMS and semiconductor process is disclosed in this invention. The method employed etching technique to etch a trench surrounding the micromachined components on each chip of the first wafer down to the bottom interconnection metal layer. The said trench can accommodate the solder of flip-chip packaging. On each chip of the second wafer, or called as the second chip, a surrounding copper pillar wall corresponding to the trench on the first chip is deposited. By wafer-level packaging, the trench on the first chip is aligned to the pillar wall, and then bonded together with elevated temperature. The face-to-face chamber formed between two chips can allow the movement of the micromachined structures. Further, the signal or power connections between two chips can be established by providing several discrete pillar bumps.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 27, 2011
    Inventors: Jung-Tang Huang, Ming-Jhe Lin, Hou-Jun Hsu