Patents by Inventor Ming Jia

Ming Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9973365
    Abstract: Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: May 15, 2018
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Wen Tong, Ming Jia, Hua Xu, Peiying Zhu, Hang Zhang
  • Patent number: 9973362
    Abstract: Methods and devices for common channel low PAPR signaling are disclosed having a power amplifier set configured to transmit broad-beam signals over a frequency band narrower than the available bandwidth and modulated with a low PAPR sequence. A second power amplifier set may be configured to transmit narrow-beam unicast signals.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: May 15, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Ming Jia, Jianglei Ma
  • Patent number: 9954715
    Abstract: The present invention provides a preamble that is inserted into an OFDMA frame and has a common sequence for all the base stations participating in a transmission. The subscriber station performs fine synchronization using the common sequence on the common preamble, and the resulting peaks will provide the locations of candidate base stations. The base station specific search is then performed in the vicinities of those peaks by using base station specific pseudo-noise sequences. With this two stage cell search, the searching window is drastically reduced. The preamble is matched to known values by a respective receiver to decode the signals and permit multiple signals to be transferred from the transmitter to the receiver. The preamble may comprise two parts, Preamble-I and Preamble-2, which may be used in different systems, including multioutput, multi-input (MIMO) systems.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 24, 2018
    Assignee: APPLE INC.
    Inventors: Jianglei Ma, Hang Zhang, Wen Tong, Ming Jia, Peiying Zhu, Mo-Han Fong
  • Patent number: 9942081
    Abstract: Embodiments are provided for guard band utilization for synchronous and asynchronous communications in wireless networks. A user equipment (UE) or a network component transmits symbols on data bands assigned for primary communications. The data bands are separated by a guard band having smaller bandwidth than the data bands. The UE or network component further modulates symbols for secondary communications with a spectrally contained wave form, which has a smaller bandwidth than the guard band. The spectrally contained wave form is achieved with orthogonal frequency-division multiplexing (OFDM) modulation or with joint OFDM and Offset Quadrature Amplitude Modulation (OQAM) modulation. The modulated symbols for the secondary communications are transmitted within the guard band.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: April 10, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Usa Vilaipornsawai, Javad Abdoli, Jianglei Ma, Ming Jia
  • Patent number: 9929889
    Abstract: A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: March 27, 2018
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang, Hua Xu, Dongsheng Yu
  • Publication number: 20180083760
    Abstract: A method for operating a transmitting device using semi-orthogonal multiple access (SOMA) includes determining power allocations and sub-quadrature amplitude modulation (sub-QAM) allocations for a first receiving device and a second receiving device in accordance with channel information associated with the first receiving device and the second receiving device, and transmitting information about a first power allocation for the first receiving device, and a first sub-QAM allocation for the first receiving device to the first receiving device.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Ming Jia, Jianglei Ma, Peiying Zhu, Hao Hu
  • Patent number: 9923617
    Abstract: Systems and methods of optimizing communication channels in multi-user communication systems are provided. Coding weights are determined based on communication channel state information for communication channels between a transmitter and multiple receivers. The coding weights are applied to communication signals to be transmitted from the transmitter to the receivers. Each receiver decodes received signals using inverses of the coding weights. Embodiments of the invention support multi-user MIMO (Multiple Input Multiple Output) where each receiver has fewer antennas than the transmitter, and enhance system performance if the total number of antennas at all of the receivers exceeds the number of antennas at the transmitter.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: March 20, 2018
    Assignee: Apple Inc.
    Inventors: Wen Tong, Ming Jia, Peiying Zhu, Alexandre M. Chloma, Mikhail G. Bakouline, Vitali B. Kreindeline
  • Patent number: 9923701
    Abstract: Various disclosed embodiments include methods and systems for communication in a wireless communication system. A method comprises receiving a signal corresponding to a plurality of modulated signals, each of the plurality of modulated signals corresponding to a unique electronic device. The method comprises filtering the received signal with a plurality of filters, each of which is matched to a corresponding filter in a respective electronic device to obtain a filtered signal for the respective electronic device. The method comprises performing a fast Fourier transform (FFT) operation on the filtered signal to obtain demodulated data corresponding to the respective electronic device.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: March 20, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Javad Abdoli, Ming Jia, Jianglei Ma
  • Patent number: 9918328
    Abstract: A method and system are provided for scheduling data transmission in a Multiple-Input Multiple-Output (MIMO) system. The MIMO system may comprise at least one MIMO transmitter and at least one MIMO receiver. Feedback from one or more receivers may be used by a transmitter to improve quality, capacity, and scheduling in MIMO communication systems. The method may include generating or receiving information pertaining to a MIMO channel metric and information pertaining to a Channel Quality Indicator (CQI) in respect of a transmitted signal; and sending a next transmission to a receiver using a MIMO mode selected in accordance with the information pertaining to the MIMO channel metric, and an adaptive coding and modulation selected in accordance with the information pertaining to the CQI.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: March 13, 2018
    Assignee: BlackBerry Limited
    Inventors: Wen Tong, Ming Jia, Jianming Wu, Dong-Sheng Yu, Peiying Zhu
  • Publication number: 20180069615
    Abstract: Spatial multiplexing and transmit diversity can improve the capacity of a wireless communication system. The system and method adapts communication schemes for communication systems with multiple antennas utilizing at least two transmission modes. The at least two transmission modes can, but are not necessarily, used for uplink communications. The two transmission modes may be chosen from the group consisting of a single antenna mode, a diversity mode a spatial multiplexed mode and a mixed diversity and spatial multiplexed mode. The at least two transmission modes may involve adaptation among multiple transmitters. At least one receiver may indicate a transmission mode to be used by a transmitter for a subsequent transmission. A transmitter may determine a transmission mode to be used for a subsequent transmission. The transmission mode can be based on channel sounding.
    Type: Application
    Filed: October 27, 2017
    Publication date: March 8, 2018
    Inventors: Jianglei Ma, Ming Jia, Jianming Wu, Peiying Zhu, Wen Tong, Evelyne Le Strat, Sarah Boumendil, Moussa Abdi
  • Publication number: 20180069614
    Abstract: Methods and devices are provided for MIMO OFDM transmitter and receivers having odd and/even numbers of transmit antennas. Various methods for pre-coding information bits before space time coding (STC) are described for enabling transmission of information bits over all antennas. Methods of decoding received signals that have been pre-coded and STC coded are also provided by embodiments of the invention. Pilot patterns for downlink and uplink transmission between a base station and one or more wireless terminals for three transmit antenna transmitters are also provided.
    Type: Application
    Filed: October 30, 2017
    Publication date: March 8, 2018
    Inventors: Mahmoud Taherzadehboroujeni, Hosein Nikopour, Amir Khandani, Wen Tong, Ming Jia, Peiying Zhu, Dong-Sheng Yu, Jianglei Ma
  • Publication number: 20180069671
    Abstract: A unified frame structure for filter bank multi-carrier (FBMC) and orthogonal frequency division multiplexed (OFDM) waveforms may allow FBMC and OFDM frames to be communicated over a common channel without significant inter-frame gaps. The unified frame structure may set an FBMC frame duration to an integer multiple of an OFDM frame element duration to enable alignment of FBMC frames and OFDM frames in the time domain. The unified frame structure may also map control channels in the FBMC and OFDM frames to common resource locations so that the respective control channels are aligned in the time and/or frequency domains. The unified frame structure may also share synchronization channels between FBMC and OFDM frames. Additionally, overhead in an FBMC time division duplexed (TDD) communications channel can be reduced by overlapping time windows appended to FBMC blocks.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventors: Javad Abdoli, Ming Jia, Jianglei Ma
  • Publication number: 20180069676
    Abstract: Aspects of the invention include methods and devices for inserting data and pilot symbols into Orthogonal Frequency Division Multiplexing (OFDM) frames having a time domain and a frequency domain. A method involves inserting in at least one zone of a first type a two dimensional array of data and pilot symbols in time and frequency and inserting in at least one zone of a second type a two dimensional array of data and pilot symbols in time and frequency. In some implementations the zone of the first type comprises common pilot symbols that can be detected by all receivers receiving the OFDM frame. In some implementations the zone of the second type comprises dedicated pilot symbols that are only detectable by a receiver that is aware of pre-processing used to encode the dedicated pilot symbols.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Jianglei Ma, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang, Mo-Han Fong
  • Publication number: 20180062894
    Abstract: Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
    Type: Application
    Filed: October 23, 2017
    Publication date: March 1, 2018
    Inventors: Jianglei Ma, Wen Tong, Ming Jia, Hua Xu, Peiying Zhu, Hang Zhang
  • Publication number: 20180062896
    Abstract: A method and apparatus are provided for reducing the number of pilot symbols within a MIMO-OFDM communication system, and for improving channel estimation within such a system. For each transmitting antenna in an OFDM transmitter, pilot symbols are encoded so as to be unique to the transmitting antenna. The encoded pilot symbols are then inserted into an OFDM frame to form a diamond lattice, the diamond lattices for the different transmitting antennae using the same frequencies but being offset from each other by a single symbol in the time domain. At the OFDM receiver, a channel response is estimated for a symbol central to each diamond of the diamond lattice using a two-dimensional interpolation. The estimated channel responses are smoothed in the frequency domain. The channel responses of remaining symbols are then estimated by interpolation in the frequency domain.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 1, 2018
    Applicant: BlackBerry Limited
    Inventors: Peiying Zhu, Wen Tong, Jianglei MA, Ming Jia
  • Publication number: 20180054268
    Abstract: A method includes generating, by a transmitter, an original OFDM signal having at least one OFDM symbol, the at least one OFDM symbol having an associated time domain tail; truncating, by the transmitter, at least a portion of the time domain tail to produce a truncated OFDM signal; and transmitting, by the transmitter, the truncated OFDM signal.
    Type: Application
    Filed: April 21, 2017
    Publication date: February 22, 2018
    Inventors: Javad Abdoli, Ming Jia, Jianglei Ma
  • Publication number: 20180054341
    Abstract: An OFDM signal may include a first edge band signal corresponding to a first edge band of the bandwidth of the OFDM signal, a second edge band signal corresponding to a second edge band of the bandwidth, and a center band signal corresponding to a center band of the bandwidth. The OFDM signal may be filtered by filtering the first edge band signal and/or the second edge band signal, so that out-of-band radiation of the OFDM may be reduced or eliminated.
    Type: Application
    Filed: March 17, 2017
    Publication date: February 22, 2018
    Inventors: Ming Jia, Jianglei Ma
  • Patent number: 9900069
    Abstract: A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets Si for each codeword ci of the codebook C. Each codeword subset Si defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset Si are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: February 20, 2018
    Assignee: Apple Inc.
    Inventors: Wen Tong, Hosein Nikopour, Amir Khandani, Hua Xu, Ming Jia, Peiying Zhu, Dong-sheng Yu
  • Publication number: 20180041367
    Abstract: Pilot, preamble and midamble patterns are provided that are particularly suited for four transmit antenna OFDM systems. Pilots are inserted in a scattered manner for each of the four antennas, either uncoded, space-time coded in pairs, space-time frequency coded in pairs, or space-time-frequency coded.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 8, 2018
    Inventors: Jianglei MA, Ming Jia, Wen Tong, Peiying Zhu, Claude Royer
  • Publication number: 20180035266
    Abstract: Systems and methods are disclosed herein for an enhanced Multimedia Broadcast Multicast Service (MBMS) in a wireless communications network. In one embodiment, a number of base stations in a MBMS zone, or broadcast region, accommodate both Spatial Multiplexing (SM) enabled user elements and non-SM enabled user elements. In another embodiment, a number of base stations form a MBMS zone, or broadcast region, where the MBMS zone is sub-divided into an SM zone and a non-SM zone. In another embodiment, the wireless communications network includes multiple MBMS zones. For each MBMS zone, base stations serving the MBMS zone transmit an MBMS zone identifier (ID) for the MBMS zone. The MBMS zone ID may be used by a user element for decoding and/or to determine when to perform a handoff from one MBMS zone to another.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 1, 2018
    Inventors: Jianglei Ma, Aaron Callard, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang