Patents by Inventor Ming-Jun Li

Ming-Jun Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10735971
    Abstract: The present disclosure provides a communication method and a communication device. The method includes: configuring at least one serving cell for each terminal, each of the at least one serving cell working on an unlicensed carrier; selecting at least one of the at least one serving cell as a primary cell or a primary secondary cell of the terminal, the selected serving cell forming a primary cell group or a primary secondary cell group of the terminal; and controlling the primary cell group or the primary secondary cell group to send a MIB to the terminal. The technical solution improves a transmission probability of the MIB of the primary cell group or the primary secondary cell group on an unlicensed frequency band, ensuring that a user receives the MIB in time to perform a time synchronization, the communication is normal, and delay and efficiency requirements of communication are met.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: August 4, 2020
    Assignee: YULONG COMPUTER TELECOMMUNICATIONS SCIENTIFIC (SHENZHEN) CO., LTD.
    Inventors: Ming-Ju Li, Ya-Jun Zhu, Yun-Fei Zhang
  • Publication number: 20200241213
    Abstract: A method of cleaving an optical fiber comprises inserting the optical fiber through a bore of a holding member, securing the optical fiber to the holding member with a bonding agent, operating at least one laser to emit at least one laser beam, and directing the at least one laser beam from the at least one laser to the end face of the holding member. At least a portion of the at least one laser beam reflects off the end face of the holding member and is thereafter incident on an end portion of the optical fiber. The at least one laser beam cleaves the end portion of the optical fiber less than 20 ?m from the end face of the holding member. Related systems are also disclosed.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Inventors: Joel Patrick Carberry, Minghan Chen, Ming-Jun Li, Anping Liu, Barada Kanta Nayak
  • Publication number: 20200225404
    Abstract: The present disclosure provides optical fibers with an impact-resistant coating system. The fibers feature low attenuation. The coating system includes a primary coating and a secondary coating. The primary coating and secondary coating have reduced thickness to provide low-diameter fibers without sacrificing protection. The primary coating has high tear strength and is resistant to damage caused by mechanical force. The secondary coating has high puncture resistance. The outer diameter of the optical fiber is less than or equal to 190 ?m.
    Type: Application
    Filed: December 17, 2019
    Publication date: July 16, 2020
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Pushkar Tandon, Ruchi Tandon
  • Publication number: 20200218008
    Abstract: Some embodiments of the disclosure relate to an optical transmission system that operates at a wavelength in the range from 950 nm to 1600 nm and that employs a single-mode optical transmitter and an optical receiver optically coupled to respective ends of a multimode fiber designed for 850 nm multimode operation. The optical transmission system also employs at least one single mode fiber situated within the optical pathway between the optical transmitter and the receiver and coupled to the multimode fiber.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 9, 2020
    Inventors: Xin Chen, Ming-Jun Li
  • Patent number: 10696580
    Abstract: An optical fiber with low fictive temperature along with a system and method for making the optical fiber are provided. The system includes a reheating stage that heats the fiber along the process pathway to a temperature sufficient to lower the fictive temperature of the fiber by relaxing the glass structure and/or driving the glass toward a more nearly equilibrium state. The fiber is drawn from a preform, conveyed along a process pathway, cooled and subsequently reheated to increase the time of exposure of the fiber to temperatures conducive to lowering the fictive temperature of the fiber. The process pathway may include multiple reheating stages as well as one or more fiber-turning devices.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: June 30, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Bruce Warren Reding, Pushkar Tandon
  • Publication number: 20200197059
    Abstract: An osteo-implant including two end portions, at least one middle structure, and a plurality of connection portions is provided. The middle structure is disposed between the two end portions and includes a plurality of middle portions. The middle portions are connected to the two end portions through the connection portions. When the two end portions are moved relatively along an axial direction of the osteo-implant, the two end portions drive the middle portions to push with each other and have displacements along a radial direction of the osteo-implant through the connection portions, such that an outer diameter of the osteo-implant is increased by the middle portions.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 25, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Jun Li, Hong-Jen Lai, Pei-I Tsai, Fang-Hei Tsau, Wei-Chin Huang, Yu-Tsung Chiu
  • Patent number: 10690844
    Abstract: Some embodiments of the disclosure relate to an optical transmission system that operates at a wavelength in the range from 950 nm to 1600 nm and that employs a single-mode optical transmitter and an optical receiver optically coupled to respective ends of a multimode fiber designed for 850 nm multimode operation. The optical transmission system also employs at least one single mode fiber situated within the optical pathway between the optical transmitter and the receiver and coupled to the multimode fiber.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: June 23, 2020
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Ming-Jun Li
  • Publication number: 20200192023
    Abstract: A high-density optical fiber ribbon is formed by two or more cladding-strengthened glass optical fibers each having an outer surface and that do not individually include a protective polymer coating. A common protective coating substantially surrounds the outer surfaces of the two or more cladding-strengthened glass optical fibers so that the common protective coating is common to the two or more cladding-strengthened glass optical fibers. A fiber ribbon cable is formed by adding a cover assembly to the fiber ribbon. A fiber ribbon interconnect is formed adding one or more optical connectors to the fiber ribbon or fiber ribbon cable. Optical data transmission systems that employ the fiber ribbon to optically connect to a photonic device are also disclosed. Methods of forming the cladding-strengthened glass optical fibers and the high-density optical fiber ribbons are also disclosed.
    Type: Application
    Filed: November 15, 2019
    Publication date: June 18, 2020
    Inventors: Philip Simon Brown, Matthew Ryan Drake, Richard Michael Fiacco, Mandakini Kanungo, Ming-Jun Li, Jeffery Scott Stone, Qi Wu, Haitao Zhang
  • Publication number: 20200192040
    Abstract: A fiber ribbon interconnect may include a fiber ribbon, a first optical connector at a first end of the fiber ribbon, and a second optical connector at a second end of the fiber ribbon. The fiber ribbon includes two or more cladding-strengthened glass optical fibers each having an outer surface. The fiber ribbon also includes a common protective coating that surrounds the outer surfaces of the two or more cladding-strengthened glass optical fibers.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 18, 2020
    Inventors: Ming-Jun Li, Qi Wu
  • Publication number: 20200185941
    Abstract: A charger adapted to charge either one of a first battery pack and a second battery pack. The first battery pack and the second battery pack have respectively a first interface and a second interface being substantially different from each other. The charger includes a housing having a receiving area in which the first battery pack and the second battery pack can be selectively received in such a way that the first battery pack is accommodated in a first region and the second battery pack is accommodated in a second region. The receiving area is at least partially defined by the first region partially overlapping the second region. The charger according to the invention is adapted to charge more than one type of battery pack, which saves cost and space needed for two separate chargers.
    Type: Application
    Filed: July 4, 2018
    Publication date: June 11, 2020
    Inventors: Hei Man Raymond LEE, Yong Min LI, Ming Jun ZHUANG
  • Publication number: 20200174180
    Abstract: The glass-based THz optical waveguides (10) disclosed herein are used to guide optical signals having a THz frequency in the range from 0.1 THz to (10) THz and include a core (20) surrounded by a cladding (30). The core has a diameter D1 in the range from (30) ?m to 10 mm and is made of fused silica glass having a refractive index n1. The cladding is made of either a polymer or a glass or glass soot and has a refractive index n2<n1 and an outer diameter D2 in the range from 100 ?m to 12 mm. The THz optical waveguides can be formed using processes that are extensions of either fiber, ceramic and soot-based technologies. In an example, the THz waveguides have a dielectric loss Df<0.005 at 100 GHz.
    Type: Application
    Filed: August 20, 2018
    Publication date: June 4, 2020
    Inventors: Ming-Jun Li, Gary Richard Trott
  • Patent number: 10663326
    Abstract: A fiber sensor includes an optical fiber configured for operation at a wavelength from about 800 nm to about 1600 nm. The optical fiber includes a cladding that is defined by a fiber outer diameter and a core that is surrounded by the cladding. The core of the optical fiber has a Rayleigh scattering coefficient, ?s, that is controlled by controlling a concentration of one or more dopants in the core. The Rayleigh scattering coefficient is tuned to be within a predetermined range of an optimum Rayleigh scattering coefficient for a given total length, L, of the optical fiber. The predetermined range is from about 70% of the optimum ?s to about 130% of the optimum ?s.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: May 26, 2020
    Assignee: Corning Incorporated
    Inventors: Anthony Artuso, Valery A Kozlov, Ming-Jun Li
  • Patent number: 10663671
    Abstract: An integrated fiber-ferrule useable as an optical coupling element includes a core directly contacting a cladding layer that has a lower index of refraction than that of the core, without an intervening adhesive. The cladding layer outer diameter is at least 100 times greater than that of the core, and matches an outer diameter of a standard ferrule. The integrated fiber-ferrule may be produced by drawing a glass preform into a cane, cutting the cane into sections, and shaping end faces of the cut sections (e.g., using a laser). To form a fiber optic assembly, a front end of an optical fiber core may be fusion spliced to a rear end of the core of the integrated fiber-ferrule. Use of an integrated fiber-ferrule permits reduction of core to fiber eccentricity, and reduction of connector insertion losses.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: May 26, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Ming-Jun Li, Qi Wu
  • Patent number: 10661533
    Abstract: A laminated glass article includes at least a first layer, a second layer in direct contact with the first layer, and an optical property difference between the first layer and the second layer. The optical property difference includes at least one of: (a) a transmission profile difference between a transmission profile of the first and second layers in a wavelength range from 200 nm to 2500 nm; or (b) a light-polarizing difference, whereby the second layer is light-polarizing with respect to electromagnetic irradiation in the wavelength range from 200 nm to 2500 nm; or (c) a refractive index difference between refractive indices of the first and second layers of at least 0.005, wherein one layer includes a base glass composition and the other layer includes the base glass composition and a dopant in an amount sufficient to cause the refractive index difference.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: May 26, 2020
    Assignee: Corning Incorporated
    Inventors: Olus Naili Boratav, Ming-Jun Li, Piotr Janusz Wesolowski
  • Publication number: 20200158945
    Abstract: A single mode optical fiber, comprising: (i) a silica based core having a step refractive index profile with an alpha of greater than 10, a relative refractive index ?1MAX, and an outer radius r1, wherein 6.25 microns>r1?4.75 microns, the core further comprising Cl, Ge, or a combination thereof; (ii) a first cladding region in contact with and surrounding the core, the first cladding region having a relative refractive index ?2MIN, an inner radius r1, and an outer radius r2, wherein r2<20 microns; and (iii) an outer cladding region surrounding the first cladding region, the outer cladding region having a relative refractive index ?3. The fiber <1300 nm, a 22 m cable cutoff wavelength <1260 nm; and a bend loss <0.005 dB/turn when the optical fiber is bent around a 30 mm mandrel; <0.5 dB/turn when the fiber is bent around a 20 mm mandrel.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Publication number: 20200150336
    Abstract: An optical fiber includes (i) a chlorine doped silica based core having a core alpha (Core?)?4, a radius r1, and a maximum refractive index delta ?1max % and (ii) a cladding surrounding the core. The cladding surrounding the core includes a) a first inner cladding region adjacent to and in contact with the core and having a refractive index delta ?2, a radius r2, and a minimum refractive index delta ?2min such that ?2min<?1max, b) a second inner cladding adjacent to and in contact with the first inner cladding having a refractive index ?3, a radius r3, and a minimum refractive index delta ?3min such that ?3min<?2, and c) an outer cladding region surrounding the second inner cladding region and having a refractive index ?5, a radius rmax, and a minimum refractive index delta ?3min such that ?3min<?2.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: 10649163
    Abstract: A rollable optical fiber ribbon utilizing low attenuation, bend insensitive fibers and cables incorporating such rollable ribbons are provided. The optical fibers are supported by a ribbon body, and the ribbon body is formed from a flexible material such that the optical fibers are reversibly movable from an unrolled position to a rolled position. The optical fibers have a large mode filed diameter, such as ?9 microns at 1310 nm facilitating low attenuation splicing/connectorization. The optical fibers are also highly bend insensitive, such as having a macrobend loss of ?0.5 dB/turn at 1550 nm for a mandrel diameter of 15 mm.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: May 12, 2020
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Publication number: 20200132936
    Abstract: The methods disclosed herein include forming an expanded core in an optical fiber with a glass core having a core dopant and a core outer surface, and a glass cladding immediately surrounding the core and having a flat glass-portion surface closest to the core outer surface at a first core spacing S1. The methods include applying heat to a section of the optical fiber to cause the glass core to expand toward the flat glass-portion surface due to thermal diffusion of the core dopant. The methods also include terminating the application of heat to define the expanded core in the heated section of the optical fiber. The expanded core defines an evanescent coupling region having a second core spacing 0?S2<S1 and an adiabatic transition region between the core and the evanescent coupling region of the expanded core.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 30, 2020
    Inventors: Alan Frank Evans, Davide Domenico Fortusini, Ming-Jun Li, Aramais Robert Zakharian
  • Patent number: 10620393
    Abstract: A low attenuation optical cable is provided. The cable includes an outer cable jacket and at least one buffer tube surrounded by the cable jacket. The cable includes a plural number of optical fibers located within the channel of the at least one buffer tube. The cable includes small sized active particles located within the buffer tube, and an average maximum outer dimension of the active particles within the buffer tube is ?50 microns. The small sized active particles reduce microbending-based attenuation otherwise seen with larger sized active particles, particularly within densely packed buffer tubes.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: April 14, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Dana Craig Bookbinder, Anne Germaine Bringuier, Donald Kennedy Hall, Inna Igorevna Kouzmina, Ming-Jun Li, David Alan Seddon, Pushkar Tandon, Ruchi Tandon
  • Patent number: 10609632
    Abstract: The present disclosure provides a Sounding Reference Signal (SRS) sending method when a Long Term Evolution (LTE) system works with a frame structure 3 in an unlicensed frequency band, a SRS sending device, and a terminal, and the SRS sending method when the LTE system works with the frame structure 3 in the unlicensed frequency band includes: determining a type of a target subframe to send a SRS; according to the type of the target subframe, selecting a target symbol in the target subframe for sending the SRS; sending the SRS through the target symbol. According to the technical solution of the present disclosure, when the LTE system works in the unlicensed frequency band, a normal transmission of the SRS can be ensured, thereby ensuring the measurement accuracy of the uplink channel quality, and improving the uplink throughput of the LTE system.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: March 31, 2020
    Assignee: YULONG COMPUTER TELECOMMUNICATION SCIENTIFIC (SHENZHEN) CO., LTD.
    Inventors: Ming-Ju Li, Ya-Jun Zhu, Yun-Fei Zhang