Patents by Inventor Ming-Liang Yen

Ming-Liang Yen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10755934
    Abstract: A chemical mechanical polishing (CMP) system and associated semiconductor fabrication methods are disclosed herein. An exemplary method includes performing a planarization process in a polishing unit of a CMP system to planarize a surface of a material layer using a CMP slurry. The method further includes, after performing the planarization process, performing a buffing process in the polishing unit of the CMP system to buff the surface of the material layer using an ozone gas dissolved in deionized water (O3/DIW) solution. The method further includes controlling the performing of the planarization process and the performing of the buffing process, such that the CMP slurry is received by the polishing unit from a first pipeline during the planarization process and the O3/DIW solution is received by the polishing unit from a second pipeline during the buffing process.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: August 25, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shich-Chang Suen, Chi-Jen Liu, Ying-Liang Chuang, Li-Chieh Wu, Liang-Guang Chen, Ming-Liang Yen
  • Publication number: 20200118823
    Abstract: A chemical mechanical polishing (CMP) system and associated semiconductor fabrication methods are disclosed herein. An exemplary method includes performing a planarization process in a polishing unit of a CMP system to planarize a surface of a material layer using a CMP slurry. The method further includes, after performing the planarization process, performing a buffing process in the polishing unit of the CMP system to buff the surface of the material layer using an ozone gas dissolved in deionized water (O3/DIW) solution. The method further includes controlling the performing of the planarization process and the performing of the buffing process, such that the CMP slurry is received by the polishing unit from a first pipeline during the planarization process and the O3/DIW solution is received by the polishing unit from a second pipeline during the buffing process.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Shich-Chang SUEN, Chi-Jen LIU, Ying-Liang CHUANG, Li-Chieh WU, Liang-Guang CHEN, Ming-Liang YEN
  • Patent number: 10515808
    Abstract: A chemical mechanical polishing (CMP) system includes an O3/DIW generator, a polishing unit, and a cleaning unit. The O3/DIW generator is configured to generate an O3/DIW solution including ozone gas (O3) dissolved in deionized water (DIW). The polishing unit includes components for buffing a surface of a semiconductor structure, and a pipeline coupled to the O3/DIW generator to receive the O3/DIW solution for the buffing. The cleaning unit is coupled to the O3/DIW generator and is configured to clean the surface of the semiconductor structure using the O3/DIW solution.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shich-Chang Suen, Chi-Jen Liu, Ying-Liang Chuang, Li-Chieh Wu, Liang-Guang Chen, Ming-Liang Yen
  • Publication number: 20170004972
    Abstract: A chemical mechanical polishing (CMP) system includes an O3/DIW generator, a polishing unit, and a cleaning unit. The O3/DIW generator is configured to generate an O3/DIW solution including ozone gas (O3) dissolved in deionized water (DIW). The polishing unit includes components for buffing a surface of a semiconductor structure, and a pipeline coupled to the O3/DIW generator to receive the O3/DIW solution for the buffing. The cleaning unit is coupled to the O3/DIW generator and is configured to clean the surface of the semiconductor structure using the O3/DIW solution.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Shich-Chang Suen, Chi-Jen LIU, Ying-Liang CHUANG, Li-Chieh WU, Liang-Guang CHEN, Ming-Liang YEN
  • Patent number: 9508716
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a method of manufacturing a semiconductor device includes providing a workpiece including an n-type field effect transistor (N-FET) region, a p-type FET (P-FET) region, and an insulating material disposed over the N-FET region and the P-FET region. The method includes patterning the insulating material to expose a portion of the N-FET region and a portion of the P-FET region, and forming an oxide layer over the exposed portion of the N-FET region and the exposed portion of the P-FET region. The oxide layer over the P-FET region is altered, and a metal layer is formed over a portion of the N-FET region and the P-FET region. The workpiece is annealed to form a metal-insulator-semiconductor (MIS) tunnel diode over the N-FET region and a silicide or germinide material over the P-FET region.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: November 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Tung Lin, Teng-Chun Tsai, Li-Ting Wang, Chi-Yuan Chen, Kuo-Yin Lin, Wan-Chun Pan, Ming-Liang Yen, Ching-Wei Tsai, Kuo-Cheng Ching, Huicheng Chang, Chih-Hao Wang
  • Patent number: 9449841
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor structure including a metal gate (MG) layer formed to fill in a trench between two adjacent interlayer dielectric (ILD) regions; performing a chemical mechanical polishing (CMP) process using a CMP system to planarize the MG layer and the ILD regions; and cleaning the planarized MG layer using a O3/DIW solution including ozone gas (O3) dissolved in deionized water (DIW). The MG layer is formed on the ILD regions.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 20, 2016
    Assignee: Taiwan Semicondcutor Manufacturing Company, Ltd.
    Inventors: Shich-Chang Suen, Chi-Jen Liu, Ying-Liang Chuang, Li-Chieh Wu, Liang-Guang Chen, Ming-Liang Yen
  • Publication number: 20150179432
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor structure including a metal gate (MG) layer formed to fill in a trench between two adjacent interlayer dielectric (ILD) regions; performing a chemical mechanical polishing (CMP) process using a CMP system to planarize the MG layer and the ILD regions; and cleaning the planarized MG layer using a O3/DIW solution including ozone gas (O3) dissolved in deionized water (DIW). The MG layer is formed on the ILD regions.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shich-Chang Suen, Chi-Jen Liu, Ying-Liang Chuang, Li-Chieh Wu, Liang-Guang Chen, Ming-Liang Yen
  • Patent number: 9064959
    Abstract: A method and apparatus for forming a CMOS device are provided. The CMOS device may include an N-type channel region formed of an III-V material and a P-type channel region formed of a germanium material. Over each channel may be formed corresponding gates and source/drain regions. The source/drain regions may be formed of a germanium material and one or more metallization layers. An anneal may be performed to form ohmic contacts for the source/drain regions. Openings may be formed in a dielectric layer covering the device and conductive plugs may be formed to provide contact to the source/drain regions.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: June 23, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Ting Wang, Teng-Chun Tsai, Chun-Hsiung Lin, Cheng-Tung Lin, Chi-Yuan Chen, Kuo-Yin Lin, Wan-Chun Pan, Ming-Liang Yen, Huicheng Chang
  • Patent number: 9048087
    Abstract: Methods for an oxide layer over an epitaxial layer. In an embodiment, a method includes forming an epitaxial layer of semiconductor material over a semiconductor substrate; forming an oxide layer over the epitaxial layer; applying a solution including an oxidizer to the oxide layer; and cleaning the oxide layer with a cleaning solution. In another embodiment, a densification process is applied to an oxide layer including treating with thermal energy, UV energy, or both. In an embodiment for a gate-all-around device, the cleaning process is applied to an oxide layer over an epitaxial portion of a fin. Additional methods are disclosed.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: June 2, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Lan Wu, Chi-Yuan Chen, Ming-Chyi Liu, Cary Chia-Chiung Lo, Teng-Chun Tsai, Cheng-Tung Lin, Kuo-Yin Lin, Li-Ting Wang, Wan-Chun Pan, Ming-Liang Yen, Huicheng Chang
  • Publication number: 20140273366
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a method of manufacturing a semiconductor device includes providing a workpiece including an n-type field effect transistor (N-FET) region, a p-type FET (P-FET) region, and an insulating material disposed over the N-FET region and the P-FET region. The method includes patterning the insulating material to expose a portion of the N-FET region and a portion of the P-FET region, and forming an oxide layer over the exposed portion of the N-FET region and the exposed portion of the P-FET region. The oxide layer over the P-FET region is altered, and a metal layer is formed over a portion of the N-FET region and the P-FET region. The workpiece is annealed to form a metal-insulator-semiconductor (MIS) tunnel diode over the N-FET region and a silicide or germinide material over the P-FET region.
    Type: Application
    Filed: April 11, 2013
    Publication date: September 18, 2014
    Inventors: Cheng-Tung Lin, Teng-Chun Tsai, Li-Ting Wang, Chi-Yuan Chen, Kuo-Yin Lin, Wan-Chun Pan, Ming-Liang Yen, Ching-Wei Tsai, Kuo-Cheng Ching, Huicheng Chang, Chih-Hao Wang
  • Publication number: 20140264362
    Abstract: A method and apparatus for forming a CMOS device are provided. The CMOS device may include an N-type channel region formed of an III-V material and a P-type channel region formed of a germanium material. Over each channel may be formed corresponding gates and source/drain regions. The source/drain regions may be formed of a germanium material and one or more metallization layers. An anneal may be performed to form ohmic contacts for the source/drain regions. Openings may be formed in a dielectric layer covering the device and conductive plugs may be formed to provide contact to the source/drain regions.
    Type: Application
    Filed: May 15, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Ting Wang, Teng-Chun Tsai, Chun-Hsiung Lin, Cheng-Tung Lin, Chi-Yuan Chen, Kuo-Yin Lin, Wan-Chun Pan, Ming-Liang Yen, Huicheng Chang
  • Publication number: 20140273412
    Abstract: Methods for an oxide layer over an epitaxial layer. In an embodiment, a method includes forming an epitaxial layer of semiconductor material over a semiconductor substrate; forming an oxide layer over the epitaxial layer; applying a solution including an oxidizer to the oxide layer; and cleaning the oxide layer with a cleaning solution. In another embodiment, a densification process is applied to an oxide layer including treating with thermal energy, UV energy, or both. In an embodiment for a gate-all-around device, the cleaning process is applied to an oxide layer over an epitaxial portion of a fin. Additional methods are disclosed.
    Type: Application
    Filed: June 21, 2013
    Publication date: September 18, 2014
    Inventors: Li-Lan Wu, Chi-Yuan Chen, Ming-Chyi Liu, Cary Chia-Chiung Lo, Teng-Chun Tsai, Cheng-Tung Lin, Kuo-Yin Lin, Li-Ting Wang, Wan-Chun Pan, Ming-Liang Yen, Huicheng Chang