Patents by Inventor Ming-Shan Jeng

Ming-Shan Jeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10481180
    Abstract: A sensing device includes a housing positioned on an outer surface of a wire and a circuit board received in the housing. The circuit board has a sensing area for sensing the wire, such that the measurements obtained by the circuit board are relative values. Therefore, the circuit design of the circuit board can be simplified, and the size of the sensing device can be reduced.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: November 19, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Bo-Yin Chu, Hsu-Cheng Chiang, Ming-Shan Jeng
  • Publication number: 20190154734
    Abstract: A sensing device includes a housing positioned on an outer surface of a wire and a circuit board received in the housing. The circuit board has a sensing area for sensing the wire, such that the measurements obtained by the circuit board are relative values. Therefore, the circuit design of the circuit board can be simplified, and the size of the sensing device can be reduced.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 23, 2019
    Inventors: Bo-Yin Chu, Hsu-Cheng Chiang, Ming-Shan Jeng
  • Publication number: 20170173556
    Abstract: An adsorption material is provided, which includes a graphene scroll of a graphene sheet wrapping along an axis. The graphene scroll has a spiral shape at a cross-section perpendicular to the axis. A modifier is grafted on an interlayer and outside of the graphene scroll, and the modifier has a hydrophilic group.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Applicant: Industrial Technology Research Institute
    Inventors: Jian-Hong LEE, Chien-Yun HUANG, Yu-Hao KANG, Ming-Shan JENG, Shan-Ling PENG
  • Patent number: 8952626
    Abstract: Systems and methods for lighting control are disclosed. The system may include at least one lighting device providing illumination and a handheld unit coupled with the lighting device to control at least one of a controllable lighting state, a controllable lighting intensity, and a controllable lighting effect of the lighting device. The handheld unit may include an image-capturing device and a processor coupled with the image-capturing device. The processor may be configured to control the image-capturing device to capture an image of a space affected by the lighting device; analyze an luminance level of the space; receive a lighting parameter; and provide a command to the lighting device for controlling at least one of the controllable lighting state, the controllable lighting intensity, and the controllable lighting effect of the lighting device based on at least one of the image, the luminance level, and the lighting parameter.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: February 10, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Yao-Te Huang, Yung-Chuan Chen, Hung-Chun Li, Yeu-Torng Yau, Ming-Shan Jeng, Ching-Ran Lee
  • Publication number: 20140150997
    Abstract: A heat pipe processing method includes steps of providing a metal tube with openings at two ends, where an inner wall of the metal tube has a capillary structure surface; and oxidizing the capillary structure surface so as to form an oxidized structure surface. In another embodiment, a heat pipe includes is provided, including a metal tube, a working fluid, and a first oxidized structure. An inner wall of the metal tube has a first area. The working fluid is filled in the metal tube. The first oxidized structure is formed on the inner wall defined by the first area, and the working fluid has a first contact angle on the first oxidized structure.
    Type: Application
    Filed: July 19, 2013
    Publication date: June 5, 2014
    Inventors: Cheng-We TU, Kuo-Hsiang Chien, Ming-Shan Jeng
  • Patent number: 8658055
    Abstract: Solid-state hydrogen fuel with a polymer matrix and fabrication methods thereof are presented. The solid-state hydrogen fuel includes a polymer matrix, and a crushed mixture of a solid chemical hydride and a solid-state catalyst uniformly dispersed in the polymer matrix. The fabrication method for the solid-state hydrogen fuel includes crushing and mixing a solid chemical hydride and a solid-state catalyst in a crushing/mixing machine, and adding the polymer matrix into the mixture of the solid chemical hydride and the solid-state catalyst to process a flexible solid-state hydrogen fuel. Moreover, various geometric and/or other shapes may be formed and placed into suitable vessels to react with a particular liquid and provide a steady rate of hydrogen release.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: February 25, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chan-Li Hsueh, Jie-Ren Ku, Shing-Fen Tsai, Ya-Yi Hsu, Cheng-Yen Chen, Reiko Ohara, Ming-Shan Jeng, Fanghei Tsau
  • Publication number: 20130337350
    Abstract: A power supply device is provided. The power supply device includes a fuel cell, a hydrogen generator, a check valve and an exhaust valve. The fuel cell has a hydrogen inlet and a hydrogen outlet. The hydrogen generator is connected to the hydrogen inlet and used for generating hydrogen. The check valve is disposed in the hydrogen inlet and used for preventing the hydrogen within the fuel cell from flowing to the hydrogen generator, and preventing exterior air from entering the fuel cell. The exhaust valve is disposed in the hydrogen outlet for exhausting the hydrogen within the fuel cell.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: Industrial Technology Research Institute
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Fang-Hei Tsau, Reiko Ohara, Shing-Fen Tsai, Chien-Chang Hung, Ming-Shan Jeng, Cheng-Yen Chen
  • Patent number: 8535838
    Abstract: A power supply device is provided. The power supply device includes a fuel cell, a hydrogen generator, a check valve and an exhaust valve. The fuel cell has a hydrogen inlet and a hydrogen outlet. The hydrogen generator is connected to the hydrogen inlet and used for generating hydrogen. The check valve is disposed in the hydrogen inlet and used for preventing the hydrogen within the fuel cell from flowing to the hydrogen generator, and preventing exterior air from entering the fuel cell. The exhaust valve is disposed in the hydrogen outlet for exhausting the hydrogen within the fuel cell.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 17, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Fang-hei Tsau, Reiko Ohara, Shing-Fen Tsai, Chien-Chang Hung, Ming-Shan Jeng, Cheng-Yen Chen
  • Publication number: 20130043797
    Abstract: Systems and methods for lighting control are disclosed. The system may include at least one lighting device providing illumination and a handheld unit coupled with the lighting device to control at least one of a controllable lighting state, a controllable lighting intensity, and a controllable lighting effect of the lighting device. The handheld unit may include an image-capturing device and a processor coupled with the image-capturing device. The processor may be configured to control the image-capturing device to capture an image of a space affected by the lighting device; analyze an luminance level of the space; receive a lighting parameter; and provide a command to the lighting device for controlling at least one of the controllable lighting state, the controllable lighting intensity, and the controllable lighting effect of the lighting device based on at least one of the image, the luminance level, and the lighting parameter.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Inventors: Yao-Te Huang, Yung-Chuan Chen, Hung-Chun Li, Yeu-Torng Yau, Ming-Shan Jeng, Ching-Ran Lee
  • Publication number: 20120309612
    Abstract: Disclosed is a magnetic catalyst formed by a single or multiple nano metal shells wrapping a carrier, wherein at least one of the metal shells is iron, cobalt, or nickel. The magnetic catalyst with high catalyst efficiency can be applied in a hydrogen supply device, and the device can be connected to a fuel cell. Because the magnetic catalyst can be recycled by a magnet after generating hydrogen, the practicability of the noble metals such as Ru with high catalyst efficiency is dramatically enhanced.
    Type: Application
    Filed: August 10, 2012
    Publication date: December 6, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chan-Li HSUEH, Cheng-Hong LIU, Jie-Ren KU, Ya-Yi HSU, Cheng-Yen CHEN, Reiko OHARA, Shing-Fen TSAI, Chien-Chang HUNG, Ming-Shan JENG
  • Patent number: 8277904
    Abstract: A method for producing a thermoelectric material is provided. A semiconductor material powder is provided. An electroless plating process is preformed to deposit metal nano-particles on the surface of semiconductor material powder. An electrical current activated sintering process is performed to form a thermoelectric material having one and plurality grain boundaries.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 2, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-Sheng Su, Chia-Hung Kuo, Ya-Wen Chou, Jie-Ren Ku, Ming-Shan Jeng, Chii-Shyang Hwang, Zong-Hao Wu
  • Publication number: 20120244065
    Abstract: Disclosed is a magnetic catalyst formed by a single or multiple nano metal shells wrapping a carrier, wherein at least one of the metal shells is iron, cobalt, or nickel. The magnetic catalyst with high catalyst efficiency can be applied in a hydrogen supply device, and the device can be connected to a fuel cell. Because the magnetic catalyst can be recycled by a magnet after generating hydrogen, the practicability of the noble metals such as Ru with high catalyst efficiency is dramatically enhanced.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chan-Li HSUEH, Cheng-Hong LIU, Jie-Ren KU, Ya-Yi HSU, Cheng-Yen CHEN, Reiko OHARA, Shing-Fen TSAI, Chien-Chang HUNG, Ming-Shan JENG
  • Patent number: 8258393
    Abstract: A thermoelectric device is provided. The thermoelectric device includes a P-type thermoelectric component, an N-type thermoelectric component, and an electrically conductive layer. Each of the P-type thermoelectric component and the N-type thermoelectric component includes a substrate and a nanowire structure. The conductive layer connects the P-type thermoelectric component set with the N-type thermoelectric component set. The thermoelectric device is adapted for recycling heat generated by the heat source, and for effectively converting the heat into electrical energy.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: September 4, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Ya-Wen Chou, Ming-Shan Jeng, Shih-Kuo Wu, Chang-Chung Yang, Kuei-Chien Chang
  • Patent number: 8187368
    Abstract: The present invention provides a low power consumption desorption apparatus, which utilizes a pair of electrodes coupled to an absorbing material to provide an electric current flowing through the absorbing material so as to desorb the substances absorbed within the absorbing material. By means of the desorption apparatus of the present invention, the absorbing material is able to enhance the desorbing efficiency and reducing power consumption during desorption. The present invention further provides a dehumidifier using the low power consumption desorption apparatus for providing a continuous dry air flow to desorb and regenerate the moisture from the absorbing material so that the dehumidifier is capable of removing moisture in the air repeatedly to reduce the humidity.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 29, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Shiann Shih, Yu-Li Lin, Jau-Chyn Huang, Ting-Wei Huang, Yen-Hsun Chi, Yo-Ming Chang, Ming-Shan Jeng, Ya-Wen Chou
  • Patent number: 8056840
    Abstract: The invention utilizes a carbon nano material to nanotize a magnesium-based hydrogen storage material, thereby forming single or multiple crystals to enhance the surface to volume ratio and hydrogen diffusion channel of the magnesium-based hydrogen storage material. Therefore, the hydrogen storage material has higher hydrogen storage capability, higher absorption/desorption rate, and lower absorption/desorption temperature.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: November 15, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Pei-Shan Yen, Chun-Ju Huang, Jie-Ren Ku, Bin-Hao Chen, Ming-Shan Jeng, FangHei Tsau, Shen-Chuan Lo, Tu Chen
  • Patent number: 8043414
    Abstract: A method and an apparatus for desorption and a dehumidifier are provided in the present invention, in which an electrical potential is applied to electrodes disposed on both ends of an absorbing material so as to desorb the substances absorbed within the absorbing material whereby the absorbing material is capable of being maintained for cycling the absorbing operation. By means of the method and the apparatus of the present invention, the desorbing efficiency can be enhanced and the energy consumption can be reduced during desorption.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: October 25, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Shan Jeng, Ming-Shiann Shih, Jau-Chyn Huang, Yu-Li Lin, Ya-Wen Chou, Ting-Wei Huang, Yu-Ming Chang
  • Publication number: 20110223350
    Abstract: A method for producing a thermoelectric material is provided. A semiconductor material powder is provided. An electroless plating process is preformed to deposit metal nano-particles on the surface of semiconductor material powder. An electrical current activated sintering process is performed to form a thermoelectric material having one and plurality grain boundaries.
    Type: Application
    Filed: July 29, 2010
    Publication date: September 15, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Sheng Su, Chia-Hung Kuo, Ya-Wen Chou, Jie-Ren Ku, Ming-Shan Jeng, Chii-Shyang Hwang, Zong-Hao Wu
  • Publication number: 20110217456
    Abstract: Disclosed is a magnetic catalyst formed by a single or multiple nano metal shells wrapping a carrier, wherein at least one of the metal shells is iron, cobalt, or nickel. The magnetic catalyst with high catalyst efficiency can be applied in a hydrogen supply device, and the device can be connected to a fuel cell. Because the magnetic catalyst can be recycled by a magnet after generating hydrogen, the practicability of the noble metals such as Ru with high catalyst efficiency is dramatically enhanced.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 8, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chan-Li HSUEH, Cheng-Hong LIU, Jie-Ren KU, Ya-Yi HSU, Cheng-Yen CHEN, Reiko OHARA, Shing-Fen TSAI, Chien-Chang HUNG, Ming-Shan JENG
  • Patent number: 8003267
    Abstract: Disclosed is a flexible power supply including a hydrogen supply device connected to a flexible fuel cell, wherein the hydrogen supply device includes a moldable hydrogen fuel. In one embodiment, the flexible fuel cell is a sheet structure, and the hydrogen supply device is a flexible flat bag, wherein the fuel cell and the hydrogen supply device are adhered to complete a sheet of a flexible power supply. The sheet of flexible power supply can be put in the pocket of cloth or baggage, or directly sewn on the outside of cap or overcoat.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: August 23, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Cheng-Yen Chen, Shing-Fen Tsai, Reiko Ohara, FangHei Tsau, Chien-Chang Hung, Ming-Shan Jeng
  • Publication number: 20110142754
    Abstract: An one-off and adjustment method of hydrogen releasing from chemical hydride. The “one/off” of hydrogen release is controlled by the “contact/non-contact” procedures between the reactants. First, at least a hydride powder, a catalyst powder and a water-containing reactant are provided, and at least any two of three are mixed to form a mixture. Hydrogen gas is generated by adjusting a contact area between the mixture and the remaining one. The hydrogen-releasing reaction is terminated when a non-contacting state between the mixture and the remaining one occurs. Alternatively, an inhibitor or an inhibiting method could be used for suppressing or terminating the hydrogen-releasing reaction. The hydrogen-releasing rate could be controlled and adjusted by the extent of suppression.
    Type: Application
    Filed: August 27, 2010
    Publication date: June 16, 2011
    Inventors: Jie-Ren KU, Chan-Li HSUEH, Cheng-Yen CHEN, Ming-Shan JENG, Fang-hei TSAU