Patents by Inventor Ming-Sheng Yu

Ming-Sheng Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240098774
    Abstract: A method and system are provided for scheduling data transmission in a Multiple-Input Multiple-Output (MIMO) system. The MIMO system may comprise at least one MIMO transmitter and at least one MIMO receiver. Feedback from one or more receivers may be used by a transmitter to improve quality, capacity, and scheduling in MIMO communication systems. The method may include generating or receiving information pertaining to a MIMO channel metric and information pertaining to a Channel Quality Indicator (CQI) in respect of a transmitted signal; and sending a next transmission to a receiver using a MIMO mode selected in accordance with the information pertaining to the MIMO channel metric, and an adaptive coding and modulation selected in accordance with the information pertaining to the CQI.
    Type: Application
    Filed: August 24, 2023
    Publication date: March 21, 2024
    Inventors: Ming JIA, Jianming WU, Dong-Sheng YU, Peiying ZHU, Wen TONG
  • Patent number: 8754003
    Abstract: A novel method to increase volumetric hydrogen storage capacity for Pt/AC materials, which comprises a material providing step, an acid washing step, a glucose mixing step, a pellet pressing step combining liquefaction and carbonization, a impurity removing step, a mixed solution introducing step, and a washing and filtering step to provide a method for high quality hydrogen storage material production by supporting platinum on active carbon.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: June 17, 2014
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Ming-Sheng Yu, Hsiu-Chu Wu, Haw-Yeu Chuang, Huan-Hsiung Tseng, Cheng-Hsiang Tung
  • Patent number: 8641803
    Abstract: The present invention relates to a gas-assisted hydrogen desorption method and apparatus, and more particularly, to a method for desorbing hydrogen from a self-catalyzing hydrogen storage material that is assisted by a carrier gas so as to further enable the portion of hydrogen containing in the self-catalyzing hydrogen storage material that can not be desorbed by conventional hydrogen desorption methods to be desorbed, and thus increase the amount of hydrogen to be released from the a self-catalyzing hydrogen storage material.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: February 4, 2014
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Huan-Hsiung Tseng, Cheng-Hsiang Tung, Ming-Sheng Yu
  • Patent number: 8597410
    Abstract: This invention provides a dynamic hydrogen-storage apparatus and the method thereof, which includes the following steps: (a) filling a container with a porous hydrogen-storage material which is loaded or doped with a catalyst; (b) setting an operational pressure and a pressure drop for the operation of storing hydrogen; (c) providing the hydrogen-storage material with a hydrogen so as to increase the pressure of the hydrogen to the operational pressure; (d) decreasing the pressure of the hydrogen by the pressure drop; and (e) repeating steps (c) and (d) for a predetermined amount of times.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 3, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Cheng-Hsiang Tung, Ming-Sheng Yu, Hsiu-Chu Wu, Huan-Hsiung Tseng
  • Publication number: 20130072378
    Abstract: A novel method to increase volumetric hydrogen storage capacity for Pt/AC materials, which comprising a providing material step, an acid washing step, a glucose mixing step, a pellet pressing step combining liquefaction and carbonization, a removing impurity step, a introducing mixed solution step, and a washing and filtering step to provide a method for high quality hydrogen storage material production by supporting platinum on active carbon.
    Type: Application
    Filed: December 22, 2011
    Publication date: March 21, 2013
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: MING-SHENG YU, Hsiu-Chu Wu, Haw-Yeu Chuang, Huan-Hsiung Tseng, Cheng-Hsiang Tung
  • Publication number: 20120107226
    Abstract: The present invention relates to a gas-assisted hydrogen desorption method and apparatus, and more particularly, to a method for desorbing hydrogen from a self-catalyzing hydrogen storage material that is assisted by a carrier gas so as to further enable the portion of hydrogen containing in the self-catalyzing hydrogen storage material that can not be desorbed by conventional hydrogen desorption methods to be desorbed, and thus increase the amount of hydrogen to be released from the a self-catalyzing hydrogen storage material.
    Type: Application
    Filed: August 9, 2011
    Publication date: May 3, 2012
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Huan-Hsiung TSENG, Cheng-Hsiang TUNG, Ming-Sheng YU
  • Publication number: 20120100065
    Abstract: This invention provides a dynamic hydrogen-storage apparatus and the method thereof, which includes the following steps: (a) filling a container with a porous hydrogen-storage material which is loaded or doped with a catalyst; (b) setting an operational pressure and a pressure drop for the operation of storing hydrogen; (c) providing the hydrogen-storage material with a hydrogen so as to increase the pressure of the hydrogen to the operational pressure; (d) decreasing the pressure of the hydrogen by the pressure drop; and (e) repeating steps (c) and (d) for a predetermined amount of times.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 26, 2012
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: CHENG-HSIANG TUNG, Ming-Sheng Yu, Hsiu-Chu Wu, Huan-Hsiung Tseng
  • Publication number: 20110172087
    Abstract: A method of forming a hydrogen storage structure is disclosed, which comprises: providing a porous material formed by micropores and nanochannels, wherein said micropores have a size less than 2 nm and a volumetric ratio larger than 0.2 cm3/g, said nanochannels have a width less than 2.5 nm, and fractal networks formed by said nanochannels have a fractal dimension closed to 3; to form an oxidized porous material by oxidation of said porous material and to properly increase and tailor sizes of said micropores and nanochannels; and forming metal particles of diameters less than 2 nm in said micropores and said nanochannels of said oxidized porous material. By the method according to the present invention, it is capable of constructing a hydrogen storage structure with room-temperature hydrogen storage capability of almost 6 wt %, which satisfies the on-board target criteria of DOE in America by 2010.
    Type: Application
    Filed: October 25, 2010
    Publication date: July 14, 2011
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: CHENG-SI TSAO, MING-SHENG YU, YI-REN TZENG, HSIU-CHU WU, TSUI-YUN CHUNG, HUA-WEN CHANG, HUAN-HSIUNG TSENG, CHUN-CHING CHIEN, HAW-YEU CHUANG
  • Publication number: 20110160042
    Abstract: The present invention provides a method for constructing a fractal network structure in hydrogen storage material to improve the hydrogen uptake at room temperature, the method including the following steps: providing a hydrogen storage material comprising a source and a receptor of hydrogen atoms, wherein the source is disposed above the receptor, and a chemical bridge is disposed between the source and the receptor, wherein the chemical bridge is composed of precursor material; and treating the hydrogen storage material to construct a fractal network structure of mesopores and micropores in the receptor, so as to enhance the hydrogen storage capacity of the hydrogen storage material at room temperature.
    Type: Application
    Filed: October 15, 2010
    Publication date: June 30, 2011
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: CHENG-SI TSAO, Ming-Sheng Yu, Yi-Ren Tzeng, Tsui-Yun Chung, Hsiu-Chu Wu, Haw-Yeu Chuang, Chien-Hung Chen, Kang-Ning Lee, Hua-Wen Chang, Huan-Hsiung Tseng
  • Patent number: 7927693
    Abstract: The present invention provides a high capacity hydrogen storage material in which a plural mesopore channels and fractal networks of nanopore channels communicating therewith and connecting to the micropores are formed in a microporous material, wherein a plural metal particles are formed on the surface of the mesopore and nanopore channels and of the micropores. In another embodiment, the present invention also provides a method for making the hydrogen storage material through oxidizing the microporous material so as to form a plural mesopore channels and fractal networks of nanopore channels, both of which are connected to the micropores to form a base for the deposition of metal particles capable of decomposing hydrogen molecules into hydrogen atoms. The high capacity hydrogen storage material is capable of increasing the capacity of hydrogen storage, and besides, the oxidizing process for making the hydrogen storage material is simple and has merits of saving cost.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: April 19, 2011
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Cheng-Si Tsao, Ming-Sheng Yu, Yi-Ren Tzeng, Cheng-Yu Wang, Hsiu-Chu Wu, Tsui-Yun Chung, Chun-Ching Chien, Li-Fu Lin
  • Publication number: 20100261094
    Abstract: An apparatus is disclosed for containing metal-organic frameworks for storing hydrogen for use in a fuel cell. The apparatus includes a cartridge for containing the metal-organic frameworks, a filter connected to the cartridge for filtering out powder of the metal-organic frameworks during the release of the hydrogen, a ball valve connected to the filter for controlling the travel of the hydrogen, a pressure regulator connected to the ball valve for regulating the pressure of the hydrogen, a flow controller connected to the pressure regulator for controlling the flow rate of the hydrogen and a pipe connected to the flow controller on one hand and connected to the fuel cell on the other hand for providing the hydrogen to the fuel cell. The flow controller includes a flow meter for showing the flow rate of the hydrogen and a needle valve operable for changing the flow rate of the hydrogen.
    Type: Application
    Filed: November 29, 2007
    Publication date: October 14, 2010
    Applicant: ATOMIC ENERGY COUNCIL - INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Ming Sheng Yu, Cheng Yu Wang, Hsiu Chu Wu, Pin Yen Liao, Yun Hwa Hwang, Che Chung Lai, Yan Hwui Wu
  • Publication number: 20100021714
    Abstract: The present invention provides a high capacity hydrogen storage material in which a plural mesopore channels and fractal networks of nanopore channels communicating therewith and connecting to the micropores are formed in a microporous material, wherein a plural metal particles are formed on the surface of the mesopore and nanopore channels and of the micropores. In another embodiment, the present invention also provides a method for making the hydrogen storage material through oxidizing the microporous material so as to form a plural mesopore channels and fractal networks of nanopore channels, both of which are connected to the micropores to form a base for the deposition of metal particles capable of decomposing hydrogen molecules into hydrogen atoms. The high capacity hydrogen storage material is capable of increasing the capacity of hydrogen storage, and besides, the oxidizing process for making the hydrogen storage material is simple and has merits of saving cost.
    Type: Application
    Filed: October 29, 2008
    Publication date: January 28, 2010
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: CHENG-SI TSAO, MING-SHENG YU, YI-REN TZENG, CHENG-YU WANG, HSIU-CHU WU, TSUI-YUN CHUNG, CHUN-CHING CHIEN, LI-FU LIN