Patents by Inventor Ming-Shuan Chen

Ming-Shuan Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240192761
    Abstract: A sampler circuit for use with a serial communication bus includes an amplifier circuit, an isolation circuit, and a latch circuit. During a first phase, the amplifier circuit amplifies a voltage difference between a first input signal and a second input signal received via the communication bus to generate a voltage difference on output nodes of the latch circuit. During an integration phase, the latch circuit increases the voltage difference on the output nodes. During a regeneration phase, the isolation circuit isolates the amplifier circuit from the latch circuit, which generates full-rail signals based on a voltage difference between the output nodes.
    Type: Application
    Filed: December 12, 2022
    Publication date: June 13, 2024
    Inventors: Yudong Zhang, Ming-Shuan Chen, Chen-Yuan Wen, Sanjeev K. Maheshwari
  • Patent number: 11664809
    Abstract: An apparatus includes a receiver buffer, a phase compensation circuit, a data sampler circuit, and an error sampler circuit. The receiver buffer may generate an equalized signal on a signal node using an input signal received via a channel. The phase compensation circuit may, in response to an initiation of a training mode, replace the equalized signal on the signal node with a reference signal. The data sampler circuit may sample, using a data clock signal, the reference signal to generate a plurality of data samples. The error sampler circuit may sample, using an error clock signal, the reference signal to generate a plurality of errors samples. The phase compensation circuit may also adjust a phase difference between the data clock signal and the error clock signal using at least some of the plurality of data samples and at least some of the plurality of error samples.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: May 30, 2023
    Assignee: Apple Inc.
    Inventors: Jaeduk Han, Wenbo Liu, Wing Liu, Ming-Shuan Chen, Sanjeev K. Maheshwari, Vishal Varma, Sunil Bhosekar, Lizhi Zhong, Gary A. Rogan
  • Publication number: 20210226639
    Abstract: An apparatus includes a receiver buffer, a phase compensation circuit, a data sampler circuit, and an error sampler circuit. The receiver buffer may generate an equalized signal on a signal node using an input signal received via a channel. The phase compensation circuit may, in response to an initiation of a training mode, replace the equalized signal on the signal node with a reference signal. The data sampler circuit may sample, using a data clock signal, the reference signal to generate a plurality of data samples. The error sampler circuit may sample, using an error clock signal, the reference signal to generate a plurality of errors samples. The phase compensation circuit may also adjust a phase difference between the data clock signal and the error clock signal using at least some of the plurality of data samples and at least some of the plurality of error samples.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Jaeduk Han, Wenbo Liu, Wing Liu, Ming-Shuan Chen, Sanjeev K. Maheshwari, Vishal Varma, Sunil Bhosekar, Lizhi Zhong, Gary A. Rogan
  • Patent number: 10972107
    Abstract: An apparatus includes a receiver buffer, a phase compensation circuit, a data sampler circuit, and an error sampler circuit. The receiver buffer may generate an equalized signal on a signal node using an input signal received via a channel. The phase compensation circuit may, in response to an initiation of a training mode, replace the equalized signal on the signal node with a reference signal. The data sampler circuit may sample, using a data clock signal, the reference signal to generate a plurality of data samples. The error sampler circuit may sample, using an error clock signal, the reference signal to generate a plurality of errors samples. The phase compensation circuit may also adjust a phase difference between the data clock signal and the error clock signal using at least some of the plurality of data samples and at least some of the plurality of error samples.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: April 6, 2021
    Assignee: Apple Inc.
    Inventors: Jaeduk Han, Wenbo Liu, Wing Liu, Ming-Shuan Chen, Sanjeev K. Maheshwari, Vishal Varma, Sunil Bhosekar, Lizhi Zhong, Gary A. Rogan
  • Publication number: 20210036707
    Abstract: An apparatus includes a receiver buffer, a phase compensation circuit, a data sampler circuit, and an error sampler circuit. The receiver buffer may generate an equalized signal on a signal node using an input signal received via a channel. The phase compensation circuit may, in response to an initiation of a training mode, replace the equalized signal on the signal node with a reference signal. The data sampler circuit may sample, using a data clock signal, the reference signal to generate a plurality of data samples. The error sampler circuit may sample, using an error clock signal, the reference signal to generate a plurality of errors samples. The phase compensation circuit may also adjust a phase difference between the data clock signal and the error clock signal using at least some of the plurality of data samples and at least some of the plurality of error samples.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Jaeduk Han, Wenbo Liu, Wing Liu, Ming-Shuan Chen, Sanjeev K. Maheshwari, Vishal Varma, Sunil Bhosekar, Lizhi Zhong, Gary A. Rogan
  • Patent number: 10277230
    Abstract: Techniques are disclosed relating to clock and data recovery circuitry. In some embodiments, a slicing circuit may be configured to sample an input signal to generate a first and second sampled data signal. In some embodiments, a phase detector circuit may be configured to compare the phases of the first and second sampled data signals. In some embodiments, a first charge pump may be configured to supply a first current to a circuit node, and a second charge pump may be configured to supply a second current to the circuit node. In some embodiments, a voltage-controlled oscillator may be configured to adjust a frequency of first and second clock signals based on a voltage of the circuit node.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: April 30, 2019
    Assignee: Apple Inc.
    Inventors: Wenbo Liu, Ming-Shuan Chen, Sanjeev K. Maheshwari
  • Publication number: 20190097638
    Abstract: Techniques are disclosed relating to clock and data recovery circuitry. In some embodiments, a slicing circuit may be configured to sample an input signal to generate a first and second sampled data signal. In some embodiments, a phase detector circuit may be configured to compare the phases of the first and second sampled data signals. In some embodiments, a first charge pump may be configured to supply a first current to a circuit node, and a second charge pump may be configured to supply a second current to the circuit node. In some embodiments, a voltage-controlled oscillator may be configured to adjust a frequency of first and second clock signals based on a voltage of the circuit node.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventors: Wenbo Liu, Ming-Shuan Chen, Sanjeev K. Maheshwari
  • Patent number: 9208130
    Abstract: A phase interpolator is described. The phase interpolator may comprise a first plurality of digital-to-analog converters coupled to receive a first phase of a clock signal; a second plurality of digital-to-analog converters coupled to receive a second phase of the clock signal; and a third plurality of digital-to-analog converters coupled to both the first phase of the clock signal and the second phase of the clock; wherein each digital-to-analog converter is configurable to receive either the first phase of the clock signal or the second phase of the clock signal. A method of implementing a phase interpolator is also described.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: December 8, 2015
    Assignee: XILINX, INC.
    Inventor: Ming-Shuan Chen
  • Patent number: 8416840
    Abstract: The present invention relates to a duobinary transceiver. Specifically, the duobinary transceiver circuit proposed by the invention provides a new circuit configure of a precoder in a typical transceiver and a decoder in a typical receiver, based on a conventional transceiver including a transmitter, a transmission medium, and a receiver.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: April 9, 2013
    Assignee: National Taiwan University
    Inventors: Jri Lee, Ming-Shuan Chen, Huai-De Wang
  • Publication number: 20090296793
    Abstract: The present invention relates to a duobinary transceiver. Specifically, the duobinary transceiver circuit proposed by the invention provides a new circuit configure of a precoder in a typical transceiver and a decoder in a typical receiver, based on a conventional transceiver including a transmitter, a transmission medium, and a receiver.
    Type: Application
    Filed: September 3, 2008
    Publication date: December 3, 2009
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Jri Lee, Ming-Shuan Chen, Huai-De Wang