Patents by Inventor Ming Su

Ming Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961800
    Abstract: A method for forming a via in a semiconductor device and a semiconductor device including the via are disclosed. In an embodiment, the method may include bonding a first terminal and a second terminal of a first substrate to a third terminal and a fourth terminal of a second substrate; separating the first substrate to form a first component device and a second component device; forming a gap fill material over the first component device, the second component device, and the second substrate; forming a conductive via extending from a top surface of the gap fill material to a fifth terminal of the second substrate; and forming a top terminal over a top surface of the first component device, the top terminal connecting the first component device to the fifth terminal of the second substrate through the conductive via.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, An-Jhih Su, Chi-Hsi Wu, Wen-Chih Chiou, Tsang-Jiuh Wu, Der-Chyang Yeh, Ming Shih Yeh
  • Patent number: 11961769
    Abstract: A method of forming an integrated circuit, including forming a n-type doped well (N-well) and a p-type doped well (P-well) disposed side by side on a semiconductor substrate, forming a first fin active region extruded from the N-well and a second fin active region extruded from the P-well, forming a first isolation feature inserted between and vertically extending through the N-well and the P-well, and forming a second isolation feature over the N-well and the P-well and laterally contacting the first and the second fin active regions.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Kuo-Hsiu Hsu, Yu-Kuan Lin, Feng-Ming Chang, Hsin-Wen Su, Lien Jung Hung, Ping-Wei Wang
  • Patent number: 11962760
    Abstract: A set of tensor-product B-Spline (TPB) basis functions is determined. A set of selected TPB prediction parameters to be used with the set of TPB basis functions for generating predicted image data in mapped images from source image data in source images of a source color grade is generated. The set of selected TPB prediction parameters is generated by minimizing differences between the predicted image data in the mapped images and reference image data in reference images of a reference color grade. The reference images correspond to the source images and depict same visual content as depicted by the source images. The set of selected TPB prediction parameters is encoded in a video signal as a part of image metadata along with the source image data in the source images. The mapped images are caused to be reconstructed and rendered with a recipient device of the video signal.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 16, 2024
    Assignee: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Guan-Ming Su, Harshad Kadu, Qing Song, Neeraj J. Gadgil
  • Patent number: 11962100
    Abstract: A dual-band antenna module includes a first antenna structure and a second antenna structure. The first antenna structure includes a first insulating substrate, a conductive metal layer, a plurality of grounding supports, and a first feeding pin. The second antenna structure includes a second insulating substrate, a top metal layer, a bottom metal layer, and a second feeding pin. The conductive metal layer is disposed on the first insulating substrate. The grounding supports are configured for supporting the first insulating substrate. The second insulating substrate is disposed above the first insulating substrate. The top metal layer and the bottom metal layer are respectively disposed on a top side and a bottom side of the second insulating substrate. The first frequency band signal transmitted or received by the first antenna structure is smaller than the second frequency band signal transmitted or received by the second antenna structure.
    Type: Grant
    Filed: August 7, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Inpaq electronic Co., Ltd.
    Inventors: Ta-Fu Cheng, Shou-Jen Li, Cheng-Yi Wang, Chih-Ming Su
  • Publication number: 20240114989
    Abstract: An upper for an article of footwear is configured to be connected to a sole structure and is configured to receive a foot. The upper includes a knitted component having a strobel portion that is configured to be disposed underneath the foot. The strobel portion defines an interior surface and an exterior surface of the knitted component. The strobel portion defines a strobel passage between the interior surface and the exterior surface. Also, the upper includes a tensile strand that extends through the strobel passage.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 11, 2024
    Inventors: Daniel A. Podhajny, Chung-Ming Chang, Ya-Fang Chen, Pei-Ju Su
  • Patent number: 11955515
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chuan Chiu, Chia-Hao Chang, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Yu-Ming Lin
  • Publication number: 20240114127
    Abstract: Methods, systems, and devices implement intra-prediction for hexagonally-sampled compression and decompression of videos and images having a regular grid of hexagonally-shaped pixels. For encoding, a prediction unit (PU) shape is selected at a sequence level from the group consisting of parallelogram, zigzag-square, hexagonal super-pixel, a rectangular zigzag and an arrow, and the hexagonally-sampled image is divided into regions based on the PU shape. For each region: a prediction mode and a PU size are determined; reference pixels are determined for each predicted pixel in the PU shape based on the prediction mode; a weighted factor is determined for each of the reference pixels based on a distance between the reference pixel and the predicted pixel; and a predicted value of each of the predicted pixels in the PU shape is determined using the corresponding reference pixels and the weighted factors.
    Type: Application
    Filed: February 10, 2022
    Publication date: April 4, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Zhaobin ZHANG, Neeraj J. GADGIL, Guan-Ming SU
  • Publication number: 20240114153
    Abstract: A first image and a second image of different dynamic ranges are derived from the same source image. Based on a chroma sampling format of the first image, it is determined whether edge preserving filtering is to be used to generate chroma upsampled image data in a reconstructed image. If so, image metadata for performing the edge preserving filtering is generated. The first image, the second image and the image metadata are encoded into an image data container to enable a recipient device to generate the reconstructed image.
    Type: Application
    Filed: September 1, 2023
    Publication date: April 4, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Anustup Kumar Atanu CHOUDHURY, Guan-Ming SU
  • Patent number: 11949437
    Abstract: A wideband antenna system includes a metal radiating portion, an aperture contact, a feed contact, an aperture tuner, an impedance tuner, a first switch, and a second switch. Two ends of the metal radiating portion respectively include a first contact and a second contact. The aperture contact is electrically connected to the metal radiating portion and is located between the first contact and the second contact. The feed contact is electrically connected to the metal radiating portion and is located between the first contact and the aperture contact. The aperture tuner is electrically connected to the aperture contact, and the impedance tuner is electrically connected to the feed contact. The first switch is electrically connected between the first contact and a zero-ohm resistor to selectively effect connection of the first contact to the zero-ohm resistor. The second switch is electrically connected between the first contact and the impedance.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 2, 2024
    Assignee: ASUSTEK COMPUTER INC.
    Inventors: Chien-Ming Hsu, Chun-Chieh Su
  • Publication number: 20240096811
    Abstract: The present disclosure provides a package structure and a method of manufacturing a package. The package structure includes a semiconductor die laterally encapsulated by an encapsulant, a redistribution structure and bumps. The redistribution structure is disposed on the semiconductor die and the encapsulant, and is electrically connected with the at least one semiconductor die. The bumps are disposed on the redistribution structure. The redistribution structure includes dielectric layers and metallic pattern layers sandwiched between the dielectric layers. The redistribution structure includes metallic pads on an outermost dielectric layer of the dielectric layers, and the outmost dielectric layer has undercut cavities beside the metallic pads.
    Type: Application
    Filed: January 11, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Chung Lu, Bo-Tao Chen, An-Jhih Su, Ming-Shih Yeh, Der-Chyang Yeh
  • Publication number: 20240095893
    Abstract: A first reshaping mapping is performed on a first image represented in a first domain to generate a second image represented in a second domain. The first domain is of a first dynamic range different from a second dynamic range of which the second domain is. A second reshaping mapping is performed on the second image represented in the second domain to generate a third image represented in the first domain. The third image is perceptually different from the first image in at least one of: global contrast, global saturation, local contrast, local saturation, etc. A display image is derived from the third image and rendered on a display device.
    Type: Application
    Filed: January 26, 2022
    Publication date: March 21, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Guan-Ming SU, Harshad KADU, Per Jonas Andreas KLITTMARK, Tao CHEN
  • Patent number: 11935836
    Abstract: A semiconductor device includes a bridge and a first integrated circuit. The bridge is free of active devices and includes a first conductive connector. The first integrated circuit includes a substrate and a second conductive connector disposed in a first dielectric layer over the substrate. The second conductive connector is directly bonded to the first conductive connector. The second conductive connector includes conductive pads and first conductive vias and a second conductive via between the conductive pads. The second conductive via is not overlapped with the first conductive vias while the first conductive vias are overlapped with one another. A vertical distance between the second conductive via and the first conductive connector is larger than a vertical distance between each of the first conductive vias and the first conductive connector, and a sidewall of the first dielectric layer is substantially flush with a sidewall of the substrate.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Lin, An-Jhih Su, Der-Chyang Yeh, Shih-Guo Shen, Chia-Nan Yuan, Ming-Shih Yeh
  • Patent number: 11936888
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Grant
    Filed: November 10, 2023
    Date of Patent: March 19, 2024
    Assignee: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Publication number: 20240085717
    Abstract: Disclosed are a super-resolution imaging system (1, 41, 51), a super-resolution imaging method, a biological sample identification system (4, 61) and method, a nucleic acid sequencing imaging system (5) and method, and a nucleic acid identification system (6) and method. The super-resolution imaging system (1, 41, 51) includes an illumination system (A) and an imaging system (B). The illumination system (A) outputs excitation light to irradiate a biological sample to generate excited light, and the imaging system (B) collects and records the excited light to generate an excited light image. The illumination system (A) includes an excitation light source (10, 10a) and a structured light generation and modulation device (11, 11a). The excitation light source (10, 10a) outputs the excitation light, and the structured light generation and modulation device (11, 11a) modulates the excitation light into structured light to irradiate the biological sample to generate the excited light.
    Type: Application
    Filed: March 9, 2020
    Publication date: March 14, 2024
    Inventors: JIELEI NI, MING NI, FAN ZHOU, ZEYU SU, KE JI, DONG WEI, MENGZHE SHEN, YUANQING LIANG, MEI LI, XUN XU
  • Publication number: 20240089474
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 14, 2024
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Publication number: 20240080465
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su
  • Publication number: 20240072021
    Abstract: A package structure and the manufacturing method thereof are provided. The package structure includes a first package including at least one first semiconductor die encapsulated in an insulating encapsulation and through insulator vias electrically connected to the at least one first semiconductor die, a second package including at least one second semiconductor die and conductive pads electrically connected to the at least one second semiconductor die, and solder joints located between the first package and the second package. The through insulator vias are encapsulated in the insulating encapsulation. The first package and the second package are electrically connected through the solder joints. A maximum size of the solder joints is greater than a maximum size of the through insulator vias measuring along a horizontal direction, and is greater than or substantially equal to a maximum size of the conductive pads measuring along the horizontal direction.
    Type: Application
    Filed: October 26, 2023
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Yu Chen, An-Jhih Su, Chi-Hsi Wu, Der-Chyang Yeh, Li-Hsien Huang, Po-Hao Tsai, Ming-Shih Yeh, Ta-Wei Liu
  • Publication number: 20240060964
    Abstract: Disclosed is a technology for assaying individual cells, in which the identity of each individual cell in an ordered array is determined from coordinates assigned to it, and can be readout at high throughput with microscope. The method is able to test responses of millions of identical cells in multiple chemical and physical processes with superior statistics power to facilitate deep data mining.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: Ming Su, Qingxuan Li, Liyuan Ma, Sidi A. Bencherif, Thibault Colombani
  • Patent number: 11895416
    Abstract: A device includes an electronic processor configured to define a first set of sample pixels from a set of sample pixels determined from received video data according to a first electro-optical transfer function (EOTF) in a first color representation of a first color space; convert the first set of sample pixels to a second EOTF via a mapping function, producing a second set of sample pixels according to the second EOTF; convert the first and second set of sample pixels from the first color representation to a second color representation of the first color space; determine a backward reshaping function by repeatedly applying and adjusting a sample backward reshaping function so as to minimize a difference between predicted pixel values obtained by applying the sample backward reshaping function to the pixels of the converted first set and the pixels of the converted second set.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: February 6, 2024
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Guan-Ming Su, Harshad Kadu, Neeraj J. Gadgil, Qing Song, Yoon Yung Lee
  • Publication number: 20240031587
    Abstract: Methods and systems for frame rate scalability are described. Support is provided for input and output video sequences with variable frame rate and variable shutter angle across scenes, or for input video sequences with fixed input frame rate and input shutter angle, but allowing a decoder to generate a video output at a different output frame rate and shutter angle than the corresponding input values. Techniques allowing a decoder to decode more computationally-efficiently a specific backward compatible target frame rate and shutter angle among those allowed are also presented.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Applicant: Dolby Laboratories Licensing Corporation
    Inventors: Robin Atkins, Peng Yin, Taoran Lu, Fangjun Pu, Sean Thomas McCarthy, Walter J. Husak, Tao Chen, Guan-Ming Su