Patents by Inventor Ming-Ting Wu

Ming-Ting Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103038
    Abstract: Probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays wherein the probes include at least one flat tensional spring segments and in some embodiments include narrowed channel passage segments (e.g. by increasing width of plunger elements or by decreasing channel widths) along portions of channel lengths (e.g. not entire channel lengths) to enhance stability or pointing accuracy while still allowing for assembled formation of movable probe elements.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 28, 2024
    Applicant: Microfabrica Inc.
    Inventor: Ming Ting Wu
  • Publication number: 20240103042
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 17, 2022
    Publication date: March 28, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094258
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094250
    Abstract: Probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays wherein the probes include at least one flat tensional spring segments and in some embodiments include one or both of:(1) narrowed channel passage segments (e.g. by increasing width of plunger elements or by decreasing channel widths) along portions of channel lengths (e.g. not entire channel lengths) to enhance stability or pointing accuracy while still allowing for assembled formation of movable probe elements and/or (2) pairs of joined probes with at least one end of the probe set having independently compressible tips (e.g. as Kelvin probe pairs for use in 4 wire Kelvin probe tests).
    Type: Application
    Filed: August 29, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Ming Ting Wu, Garret R. Smalley
  • Publication number: 20240094249
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays wherein the probes include at least one flat extension spring segment and wherein in some embodiments the probes also provide: (1) narrowed channel passage segments (e.g. by increasing width of plunger elements or by decreasing channel widths) along portions of channel lengths (e.g. not entire channel lengths) to enhance stability or pointing accuracy while still allowing for assembled formation of movable probe elements, and/or (2) ratcheting elements on probe arms and/or frame elements to allow permanent or semi-permanent transition from a build state or initial state to a working state or pre-biased state.
    Type: Application
    Filed: June 30, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Ming Ting Wu, Arun S. Veeramani
  • Publication number: 20240094256
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner spring elements along their lengths. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094257
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240085457
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays. In the various embodiments, probes include at least two springs separated by a movable stop while in other embodiments, three or more springs may be included with two or more movable stops. Movable stops interact with fixed stops that are either part of the probes themselves or part of separate elements that engage with the probes (such as array frame structures) that provide for the retention, longitudinal and/or lateral positioning of probes and possibly for orientation of the probes about a longitudinal axis. Fixed stops provide for controlled limits for movement of the movable stops which in turn allow for enhanced compliant or elastic performance of the probes upon increased probe compression in either one direction, in the order of tip compressions, or in both directions or tip compression orders (e.g.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Ming Ting Wu, Garret R. Smalley, Dennis R. Smalley
  • Patent number: 11913981
    Abstract: An electrostatic sensing system configured to sense an electrostatic information of a fluid inside a fluid distribution component and including an electrostatic sensing assembly, a signal amplifier and an analog-to-digital converter. The electrostatic sensing assembly includes a sensing component, and a shield. The sensing component is configured to be disposed at the fluid distribution component. The sensing component is disposed through the fluid distribution component so as to be partially located in the fluid distribution component. The shield surrounds a part of the sensing component that is located in the fluid distribution component. At least part of the shield is located on an upstream side of the sensing component. The signal amplifier is electrically connected to the sensing component. The analog-to-digital converter is electrically connected to the signal amplifier. The shield has an opening spaced apart from the sensing component.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 27, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Mean-Jue Tung, Ming-Da Yang, Shi-Yuan Tong, Yu-Ting Huang, Chun-Pin Wu
  • Patent number: 11906549
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays wherein the probes include at least one flat tensional spring segment.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: February 20, 2024
    Assignee: Microfabrica Inc.
    Inventor: Ming Ting Wu
  • Publication number: 20240044939
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays. In the various embodiments, probes include at least two flat spring segments with at least one of those segments being used in a compressive manner wherein the probe additionally includes guide elements, framing structures or other structural configurations that limit or inhibit one or more compressive spring segments from bowing or deflecting out of a desired position when subjected to loading.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 8, 2024
    Inventor: Ming Ting Wu
  • Patent number: 11886734
    Abstract: A secure memory card includes a non-volatile memory device for storing data, which includes a specific address and a regular address different from the first specific address; a secure element for conducting a securing operation; and a non-volatile memory controller in communication with the non-volatile memory device and the secure element, adapted to receive a command from a host. The non-volatile memory controller interacts with the secure element to conduct the securing operation in response to the command from the host if the command from the host is secure-element control command. The secure-element control command is a single command taking a single instruction cycle and corresponds to the specific address. The non-volatile memory controller interacts with the non-volatile memory device while having no interaction with the secure element in response to the command from the host if the command from the host is a non-secure-element control command corresponding to the regular address.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: January 30, 2024
    Assignee: INFOKEYVAULT TECHNOLOGY CO., LTD.
    Inventors: Ming-Ting Wu, Neng-Jie Yu, Chihhung Lin
  • Patent number: 11867721
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays. In the various embodiments, probes include at least two springs separated by a movable stop while in other embodiments, three or more springs may be included with two or more movable stops. Movable stops interact with fixed stops that are either part of the probes themselves or part of separate elements that engage with the probes (such as array frame structures) that provide for the retention, longitudinal and/or lateral positioning of probes and possibly for orientation of the probes about a longitudinal axis. Fixed stops provide for controlled limits for movement of the movable stops which in turn allow for enhanced compliant or elastic performance of the probes upon increased probe compression in either one direction, in the order of tip compressions, or in both directions or tip compression orders (e.g.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: January 9, 2024
    Assignee: Microfabrica Inc.
    Inventors: Ming Ting Wu, Garret R. Smalley, Dennis R. Smalley
  • Publication number: 20230358785
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and an array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes of an array plate and an upper retention feature having a lateral configuration that is sized to pass through the extension provided by the side wall feature of the plate probe hole when aligned and after longitudinally locating the upper retention feature above the extension, the retention feature undergoes displacement relative to the upper plate probe hole such that the upper retention feature can no longer longitudinally pass through the extension of the upper plate probe hole.
    Type: Application
    Filed: April 4, 2023
    Publication date: November 9, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230349947
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and an array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes of a array plate and an upper retention feature comprising at least one tab-like feature extending laterally from the body of the probe at a level above and longitudinally spaced from the lower retention feature; and wherein after longitudinally locating the upper retention feature above the plate probe hole in the array plate, the upper retention feature undergoes lateral displacement such that the upper retention feature can no longer longitudinally pass through the plate probe hole in the array plate.
    Type: Application
    Filed: April 4, 2023
    Publication date: November 2, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Patent number: 11802891
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays. In the various embodiments, probes include at least two flat spring segments with at least one of those segments being used in a compressive manner wherein the probe additionally includes guide elements, framing structures or other structural configurations that limit or inhibit one or more compressive spring segments from bowing or deflecting out of a desired position when subjected to loading.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: October 31, 2023
    Assignee: Microfabrica Inc.
    Inventor: Ming Ting Wu
  • Publication number: 20230324435
    Abstract: Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
    Type: Application
    Filed: April 12, 2023
    Publication date: October 12, 2023
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Uri Frodis, Heath A. Jensen
  • Publication number: 20230324436
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: March 21, 2023
    Publication date: October 12, 2023
    Applicant: University of Southern California
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20230314482
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and a dual array plate mounting and retention configuration. The probes may comprise one or more mounting features that extend laterally from a body portion of the probe and the lower and upper array plates, in combination, capture: (1) at least one of the mounting features to inhibit excessive downward vertical movement of the probe body relative to the array plates, (2) at least one of the mounting features to inhibit excessive upward vertical movement of the probe body relative to the array plates, and (3) at least one of the mounting features to inhibit excessive lateral movement of the probe relative to the array plates, and wherein the at least one lower and upper plates longitudinally contact each other in a stacked assembly.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 5, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20230314474
    Abstract: A method of forming a probe, comprises providing a first and a second probe modules, having respective compliant element functionally joining respective probes arm that directly or indirectly holds a first and a second tips and forming the probe by laterally and longitudinally aligning the first and second probe modules with their respective tips pointing away from each other.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 5, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley