Patents by Inventor Ming-Wei Hsu
Ming-Wei Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12159092Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.Type: GrantFiled: July 26, 2023Date of Patent: December 3, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau
-
Publication number: 20240379820Abstract: In an embodiment, a method of forming a semiconductor device includes forming a dummy gate stack over a substrate; forming a first spacer layer over the dummy gate stack; oxidizing a surface of the first spacer layer to form a sacrificial liner; forming one or more second spacer layers over the sacrificial liner; forming a third spacer layer over the one or more second spacer layers; forming an inter-layer dielectric (ILD) layer over the third spacer layer; etching at least a portion of the one or more second spacer layers to form an air gap, the air gap being interposed between the third spacer layer and the first spacer layer; and forming a refill layer to fill an upper portion of the air gap.Type: ApplicationFiled: July 24, 2024Publication date: November 14, 2024Inventors: Ming-Jhe Sie, Chen-Huang Huang, Shao-Hua Hsu, Cheng-Chung Chang, Szu-Ping Lee, An Chyi Wei, Shiang-Bau Wang, Chia-Jen Chen
-
Publication number: 20240371869Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.Type: ApplicationFiled: July 17, 2024Publication date: November 7, 2024Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
-
Publication number: 20240365623Abstract: A light-emitting device is provided. The light-emitting device includes a circuit substrate, an array substrate, a plurality of light-emitting units and a driver. The circuit substrate has a top surface. A top circuit is disposed on the top surface. The array substrate is disposed on the top surface of the circuit substrate and electrically connected to the top circuit. The light-emitting units are disposed on the array substrate. The light-emitting device further includes an electrical connection structure, a plurality of light extraction layers, a protective layer, a plurality of test pads, and a light absorption layer. The plurality of test pads are disposed on the array substrate, and the light absorption layer covers at least one of the test pads.Type: ApplicationFiled: July 5, 2024Publication date: October 31, 2024Inventors: Shun-Yuan HU, Chin-Lung TING, Li-Wei MAO, Ming-Chun TSENG, Kung-Chen KUO, Yi-Hua HSU, Ker-Yih KAO
-
Patent number: 12132050Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.Type: GrantFiled: December 1, 2023Date of Patent: October 29, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
-
Publication number: 20240337917Abstract: A reflective mask includes a substrate, a reflective multilayer disposed on the substrate, a capping layer disposed on the reflective multilayer, and an absorber layer disposed on the capping layer. The absorber layer includes one or more alternating pairs of a first Cr based layer and a second Cr based layer different from the first Cr based layer.Type: ApplicationFiled: June 17, 2024Publication date: October 10, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Pei-Cheng HSU, Ching-Huang CHEN, Hung-Yi TSAI, Ming-Wei CHEN, Hsin-Chang LEE, Ta-Cheng LIEN
-
Patent number: 12107149Abstract: In an embodiment, a method of forming a semiconductor device includes forming a dummy gate stack over a substrate; forming a first spacer layer over the dummy gate stack; oxidizing a surface of the first spacer layer to form a sacrificial liner; forming one or more second spacer layers over the sacrificial liner; forming a third spacer layer over the one or more second spacer layers; forming an inter-layer dielectric (ILD) layer over the third spacer layer; etching at least a portion of the one or more second spacer layers to form an air gap, the air gap being interposed between the third spacer layer and the first spacer layer; and forming a refill layer to fill an upper portion of the air gap.Type: GrantFiled: April 18, 2023Date of Patent: October 1, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Ming-Jhe Sie, Chen-Huang Huang, Shao-Hua Hsu, Cheng-Chung Chang, Szu-Ping Lee, An Chyi Wei, Shiang-Bau Wang, Chia-Jen Chen
-
Publication number: 20240313091Abstract: Methods of cutting fins, and structures formed thereby, are described. In an embodiment, a structure includes a first fin and a second fin on a substrate, and a fin cut-fill structure disposed between the first fin and the second fin. The first fin and the second fin are longitudinally aligned. The fin cut-fill structure includes a liner on a first sidewall of the first fin, and an insulating fill material on a sidewall of the liner and on a second sidewall of the first fin. The liner is further on a surface of the first fin between the first sidewall of the first fin and the second sidewall of the first fin.Type: ApplicationFiled: May 22, 2024Publication date: September 19, 2024Inventors: Ryan Chia-Jen Chen, Li-Wei Yin, Tzu-Wen Pan, Cheng-Chung Chang, Shao-Hua Hsu, Yi-Chun Chen, Yu-Hsien Lin, Ming-Ching Chang
-
Publication number: 20240290869Abstract: A method of forming a gas spacer in a semiconductor device and a semiconductor device including the same are disclosed. In accordance with an embodiment, a method includes forming a gate stack over a substrate; forming a first gate spacer on sidewalls of the gate stack; forming a second gate spacer on sidewalls of the first gate spacer; removing the second gate spacer using an etching process to form a first opening, the etching process being performed at a temperature less than 0° C., the etching process using an etching solution including hydrogen fluoride; and depositing a dielectric layer over the first gate spacer and the gate stack, the dielectric layer sealing a gas spacer in the first opening.Type: ApplicationFiled: April 23, 2024Publication date: August 29, 2024Inventors: Chen-Huang Huang, Ming-Jhe Sie, Cheng-Chung Chang, Shao-Hua Hsu, Shu-Uei Jang, An Chyi Wei, Shiang-Bau Wang, Ryan Chia-Jen Chen
-
Patent number: 12063832Abstract: A light-emitting device is provided. The light-emitting device includes a circuit substrate, an array substrate, a plurality of light-emitting units and a driver. The circuit substrate has a top surface. A top circuit is disposed on the top surface. The array substrate is disposed on the top surface of the circuit substrate and electrically connected to the top circuit. The light-emitting units are disposed on the array substrate. The light-emitting device further includes an electrical connection structure, a plurality of light extraction layers, a protective layer, a plurality of test pads, and a light absorption layer. The plurality of test pads are disposed on the array substrate, and the light absorption layer covers at least one of the test pads.Type: GrantFiled: March 30, 2023Date of Patent: August 13, 2024Assignee: INNOLUX CORPORATIONInventors: Shun-Yuan Hu, Chin-Lung Ting, Li-Wei Mao, Ming-Chun Tseng, Kung-Chen Kuo, M-Hua Hsu, Ker-Yih Kao
-
Patent number: 12063849Abstract: A flexible display module includes a first light-transmissive layer and a first display layer. The first light-transmissive layer includes a display surface. The first light-transmissive layer has a first width in a second direction. The first display layer is disposed below the first light-transmissive layer. The first display layer has a second width in the second direction. The first display layer includes a circuit layer. The flexible display module is configured to be bent along an axis, the axis extends along a first direction, the first direction is perpendicular to the second direction, and the first width is greater than the second width. A line width of the circuit layer more close to a periphery of the display surface is less than a line width of the circuit layer more close to an inner area of the display surface.Type: GrantFiled: November 4, 2021Date of Patent: August 13, 2024Assignee: AU OPTRONICS CORPORATIONInventors: Ming-Chang Hsu, Chih-Chieh Lin, Ming-Hsuan Yu, Ming-Wei Lin
-
Patent number: 12062151Abstract: An image processing circuit performs super-resolution (SR) operations. The image processing circuit includes memory to store multiple parameter sets of multiple artificial intelligence (AI) models. The image processing circuit further includes an image guidance module, a parameter decision module, and an SR engine. The image guidance module operates to detect a representative feature in an image sequence including a current frame and past frames within a time window. The parameter decision module operates to adjust parameters of one or more AI models based on a measurement of the representative feature. The SR engine operates to process the current frame using the one or more AI models with the adjusted parameters to thereby generate a high-resolution image for display.Type: GrantFiled: December 10, 2020Date of Patent: August 13, 2024Assignee: MediaTek Inc.Inventors: Ming-En Shih, Ping-Yuan Tsai, Yu-Cheng Tseng, Kuo-Chen Huang, Kuo-Chiang Lo, Hsin-Min Peng, Chun Hsien Wu, Pei-Kuei Tsung, Tung-Chien Chen, Yao-Sheng Wang, Cheng Lung Jen, Chih-Wei Chen, Chih-Wen Goo, Yu-Sheng Lin, Tsu Jui Hsu
-
Patent number: 12051896Abstract: A device is disclosed herein. The device includes a bias generator, an ESD driver, and a logic circuit. The bias generator includes a first transistor. The ESD driver includes a second transistor and a third transistor coupled to each other in series. The logic circuit is configured to generate a logic control signal. When the first transistor is turned on by a detection signal, the first transistor is turned off.Type: GrantFiled: May 24, 2023Date of Patent: July 30, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Po-Lin Peng, Yu-Ti Su, Chia-Wei Hsu, Ming-Fu Tsai, Shu-Yu Su, Li-Wei Chu, Jam-Wem Lee, Chia-Jung Chang, Hsiang-Hui Cheng
-
Patent number: 12044960Abstract: A reflective mask includes a substrate, a reflective multilayer disposed on the substrate, a capping layer disposed on the reflective multilayer, and an absorber layer disposed on the capping layer. The absorber layer includes one or more alternating pairs of a first Cr based layer and a second Cr based layer different from the first Cr based layer.Type: GrantFiled: June 26, 2023Date of Patent: July 23, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Pei-Cheng Hsu, Ching-Huang Chen, Hung-Yi Tsai, Ming-Wei Chen, Hsin-Chang Lee, Ta-Cheng Lien
-
Patent number: 12048084Abstract: A covering film (100) includes a first covering layer (10), a first adhesive layer (20), and a thermal conductive layer (30) sandwiched between the first covering layer (10) and the first adhesive layer (20). A thermal conductivity of the thermal conductive layer (30) is K1, K1 is in a range of 3 W/m.K to 65 W/m.K. A thermal conductivity of the first covering layer (10) is K2, K2 is in a range of 0.02 W/m.K to 3.0 W/m.K. A thermal conductivity of the first adhesive layer (20) is K3, K3 is in a range of 0.02 W/m.K to 1.0 W/m.K. A circuit board and its manufacturing method are also provided.Type: GrantFiled: March 27, 2020Date of Patent: July 23, 2024Assignees: Avary Holding (Shenzhen) Co., Limited., QING DING PRECISION ELECTRONICS (HUAIAN) CO., LTDInventors: Hsiao-Ting Hsu, Ming-Jaan Ho, Katsumi Fujiwara, Fu-Yun Shen, Fu-Wei Zhong
-
Publication number: 20240239059Abstract: A molding method of a support rod that first passing a plurality of long fibers through a resin bath for impregnating with resin, then passing the plurality of long fibers impregnated with resin through a bundling hole of a position-constrained vertical plate on a machine to preliminarily form a bundle end; providing a coating layer on the machine, one end of the coating layer obliquely passes through a guiding portion on the position-constrained vertical plate to downwardly contact the bundle end; then placing the one end of the coating layer and the bundle end into a mold cavity of a mold at the same time to form a long rod body; and then cutting the long rod body into multi-segment support rods through a cutting process.Type: ApplicationFiled: May 17, 2023Publication date: July 18, 2024Inventors: Che-Yuan Liu, Chang-Hsing Lee, Ming-Chuan Liu, Zhao-Xu Lai, Pen-Chien Yu, Shu-Fen Wang, Chia-Chang Hsu, Ren-Wei Tsai, Zong-You Chen, Da-Chun Chien
-
Patent number: 10627890Abstract: A bridge module is provided. The bridge module comprise a first transmission unit electrically connected to a host to receive a power status signal from the host; a second transmission unit electrically connected to a data transceiver device to have data transmission with the data transceiver device at a download data transmission speed; and a processing device electrically connected to the first transmission unit and the second transmission unit, and configured to adjust the download data transmission speed and a processor clock of the processing device according to the power status signal. An operation method is also provided.Type: GrantFiled: October 26, 2017Date of Patent: April 21, 2020Assignee: ASMEDIA TECHNOLOGY INC.Inventors: Tien-Hsiang Tseng, Ming-Wei Hsu
-
Publication number: 20180129260Abstract: A bridge module is provided. The bridge module comprise a first transmission unit electrically connected to a host to receive a power status signal from the host; a second transmission unit electrically connected to a data transceiver device to have data transmission with the data transceiver device at a download data transmission speed; and a processing device electrically connected to the first transmission unit and the second transmission unit, and configured to adjust the download data transmission speed and a processor clock of the processing device according to the power status signal. An operation method is also provided.Type: ApplicationFiled: October 26, 2017Publication date: May 10, 2018Inventors: Tien-Hsiang TSENG, Ming-Wei HSU
-
Patent number: 9602104Abstract: An output buffer with an offset cancellation structure for an LCD source driver includes an operational amplifier, for driving an output signal of the output buffer according to a data signal from a data input terminal of the output buffer; a reference voltage generator, for generating a reference voltage and inputting the reference voltage to the operational amplifier; and a sampling capacitor, coupled between a second input terminal of the operational amplifier and the data input terminal of the output buffer in a first phase, and coupled between the second input terminal of the operational amplifier and an output terminal of the operational amplifier in a second phase, wherein the second input terminal of the operational amplifier is further coupled to the output terminal of the operational amplifier in the first phase. The output signal outputs the data signal where the offset voltage is cancelled in the second phase.Type: GrantFiled: March 10, 2015Date of Patent: March 21, 2017Assignee: Sitronix Technology Corp.Inventors: Ming-Wei Hsu, Chern-Lin Chen
-
Publication number: 20160269027Abstract: An output buffer with an offset cancellation structure for an LCD source driver includes an operational amplifier, for driving an output signal of the output buffer according to a data signal from a data input terminal of the output buffer; a reference voltage generator, for generating a reference voltage and inputting the reference voltage to the operational amplifier; and a sampling capacitor, coupled between a second input terminal of the operational amplifier and the data input terminal of the output buffer in a first phase, and coupled between the second input terminal of the operational amplifier and an output terminal of the operational amplifier in a second phase, wherein the second input terminal of the operational amplifier is further coupled to the output terminal of the operational amplifier in the first phase. The output signal outputs the data signal where the offset voltage is cancelled in the second phase.Type: ApplicationFiled: March 10, 2015Publication date: September 15, 2016Inventors: Ming-Wei Hsu, Chern-Lin Chen