Patents by Inventor Ming-Yu Hsieh

Ming-Yu Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140348217
    Abstract: A transmitter system includes a digital phase rotator, a phase rotation controller, and a digital radio-frequency (RF) transmitter. The digital phase rotator receives a first constellation data, and applies a digital phase rotation to the received first constellation data to generate a second constellation data. The phase rotation controller configures the digital phase rotation. The digital RF transmitter receives a digital input data derived from the second constellation data, and converts the digital input data into an analog RF output.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 27, 2014
    Applicant: MEDIATEK INC.
    Inventors: Ming-Yu Hsieh, Chi-Hsueh Wang, Pou-Chi Chang
  • Patent number: 8890634
    Abstract: A modulator generates a baseband digital signal from an information-bearing digital signal. The baseband signal has time-varying phase and amplitude defined by a sequence of complex data words, each having an in-phase (I) component and a quadrature (Q) component. A noise-shaping modulator generates a noise-shaped digital signal from the baseband digital signal such that quantization noise in the noise-shaping modulator is attenuated by a spectral null of its noise transfer function. The spectral null is selected by a noise-shaping parameter corresponding to a selected one of a plurality of output frequencies. A signal converter generates an analog signal conveying the information of the information-bearing digital signal on an analog carrier signal having the selected output frequency.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: November 18, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Dennis Mahoney, Bernard Ginetti, Zhongxuan Zhang, Khurram Muhammad, Chih-Ming Hung, Ming-Yu Hsieh
  • Patent number: 8890585
    Abstract: A frequency multiplier and associated method are provided, wherein the frequency multiplier includes a waveform generator and a slicer. The waveform generator generates a waveform in response to an input signal, and the slicer induces transitions in an output signal whenever the waveform crosses each of a plurality of reference levels, such that a frequency of the output signal is a multiple of a frequency of the input signal.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: November 18, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Jian-Yu Ding, Shih-Chieh Yen, Ming-Yu Hsieh, Yao-Chi Wang
  • Patent number: 8866523
    Abstract: An edge alignment apparatus includes: a signal source, for generating a first and a second square wave signals; a phase delay circuit, for receiving the first and the second square wave signals to generate a delayed first and a delayed second square wave signals; a data circuit, for generating a third square wave signal according to the delayed second square wave signal; and a phase calibrating circuit, for receiving the third square wave signal and the delayed first squared wave signal to generate at least one phase tuning signal to the phase delay circuit for tuning a phase difference between the delayed first and the delayed second square wave signals, such that a signal edge of the third square wave signal aligns with that of the first square wave signal. The first, second and third square wave signals have a same frequency.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: October 21, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Ming-Yu Hsieh, Sheng-Che Tseng, Chih-Ming Hung
  • Patent number: 8731025
    Abstract: An offset phase-locked loop (PLL) transmitter comprises a clock generator that generates a first clock signal; a detector that detects a phase difference between an input data signal and a feedback data signal to generate a control signal; a controlled oscillator, coupled to the detector, that generates an output data signal according to the control signal; a mixer, coupled to the controlled oscillator and the clock generator, that mixes the output data signal according to the first clock signal to generate the feedback data signal; and a control circuit, coupled to the detector and the controlled oscillator, that adjusts the operating frequency curve of the controlled oscillator by one of a first step distance and a second step distance smaller than the first step distance such that the control signal is substantially equal to a predetermined value.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: May 20, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Shih-Chieh Yen, Yao-Chi Wang, Ming-Yu Hsieh
  • Publication number: 20140132313
    Abstract: A frequency multiplier and associated method are provided, wherein the frequency multiplier includes a waveform generator and a slicer. The waveform generator generates a waveform in response to an input signal, and the slicer induces transitions in an output signal whenever the waveform crosses each of a plurality of reference levels, such that a frequency of the output signal is a multiple of a frequency of the input signal.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: MSTAR SEMICONDUCTOR, INC.
    Inventors: Jian-Yu Ding, Shih-Chieh Yen, Ming-Yu Hsieh, Yao-Chi Wang
  • Publication number: 20140118081
    Abstract: A modulator generates a baseband digital signal from an information-bearing digital signal. The baseband signal has time-varying phase and amplitude defined by a sequence of complex data words, each having an in-phase (I) component and a quadrature (Q) component. A noise-shaping modulator generates a noise-shaped digital signal from the baseband digital signal such that quantization noise in the noise-shaping modulator is attenuated by a spectral null of its noise transfer function. The spectral null is selected by a noise-shaping parameter corresponding to a selected one of a plurality of output frequencies. A signal converter generates an analog signal conveying the information of the information-bearing digital signal on an analog carrier signal having the selected output frequency.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: MSTAR SEMICONDUCTOR, INC.
    Inventors: Dennis Mahoney, Bernard Ginetti, Zhongxuan Zhang, Khurram Muhammad, Chih-Ming Hung, Ming-Yu Hsieh
  • Patent number: 8629728
    Abstract: A voltage-controlled oscillator (VCO) control circuit, used for controlling a VCO to process phase locking procedure after receiving a frequency locking signal, comprises an operating frequency controller and a judgment unit. The operating frequency controller, coupled to the VCO and the judgment unit, generates one of a first control code and a second control code to the VCO. The judgment unit, coupled to an input end of the VCO, generates a phase locking signal according to a voltage control signal inputted to the VCO. When the operating frequency controller receives the frequency locking signal, the operating frequency controller generates a first control code to control the VCO to switch from a first candidate VCO curve to a second candidate VCO curve. When the operating frequency controller receives the phase locking signal, the operating frequency controller generates a second control code to control the VCO to switch from the second candidate VCO curve to the first candidate VCO curve.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: January 14, 2014
    Assignee: MStar Semiconductor, Inc.
    Inventors: Yao-Chi Wang, Ming-Yu Hsieh, Shih-Chieh Yen
  • Publication number: 20130300478
    Abstract: An edge alignment apparatus includes: a signal source, for generating a first and a second square wave signals; a phase delay circuit, for receiving the first and the second square wave signals to generate a delayed first and a delayed second square wave signals; a data circuit, for generating a third square wave signal according to the delayed second square wave signal; and a phase calibrating circuit, for receiving the third square wave signal and the delayed first squared wave signal to generate at least one phase tuning signal to the phase delay circuit for tuning a phase difference between the delayed first and the delayed second square wave signals, such that a signal edge of the third square wave signal aligns with that of the first square wave signal. The first, second and third square wave signals have a same frequency.
    Type: Application
    Filed: April 29, 2013
    Publication date: November 14, 2013
    Applicant: MStar Semiconductor, Inc.
    Inventors: Ming-Yu Hsieh, Sheng-Che Tseng, Chih-Ming Hung
  • Patent number: 8582690
    Abstract: An apparatus for determining signal power comprise an oscillating circuit and a determining circuit. The oscillating circuit generates an oscillating signal. When a to-be-detected signal has signal power greater than a threshold, the oscillating signal has a first frequency; when the signal power is smaller than the threshold, the oscillating signal has a second frequency. The determining circuit determines whether the oscillating signal has either the first frequency or the second frequency, and generates a determination result accordingly.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: November 12, 2013
    Assignee: MStar Semiconductor, Inc.
    Inventors: Ming Yu Hsieh, Shih-Chieh Yen
  • Patent number: 8487675
    Abstract: A phase-locked loop (PLL) including an active filter, a voltage-controlled oscillator (VCO), two phase detectors, a charge pump and a digital-to-analog converter (DAC) is provided. The VCO generates an oscillation signal according to a control signal provided at an output of the active filter. The first phase detector generates a phase difference signal according to a reference signal and a feedback signal associating with the oscillation signal. The charge pump provides a charging current to a first input of the active filter according to the phase difference. The second phase detector generates a digital reference signal according to the phase difference between the reference signal and the feedback signal. The DAC converts the digital reference signal to an analog reference voltage and provides the analog reference voltage to the second input of the active filter.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: July 16, 2013
    Assignee: MStar Semiconductor, Inc.
    Inventors: Ming-Yu Hsieh, Shih-Chieh Yen
  • Patent number: 8421507
    Abstract: A phase-locked loop (PLL) includes a charge pump, a frequency divider, a voltage detector, a control module, and a calibration module. When a predetermined current amount and a predetermined frequency dividing amount are provided, the voltage detector measures a voltage associated with an output frequency of the PLL to generate a first reference voltage. When a test current amount and the predetermined frequency dividing amount are provided, the voltage detector again measures the voltage to generate a second reference voltage. When the predetermined current amount and a test frequency dividing amount are provided, the voltage detector again measures the voltage to generate a third reference voltage. The control module estimates a loop gain of the PLL according to the current amounts, the frequency dividing amounts and the reference voltages. The calibration module calibrates the PLL according to the loop gain.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 16, 2013
    Assignee: MStar Semiconductor, Inc.
    Inventors: Ming-Yu Hsieh, Shih-Chieh Yen
  • Publication number: 20120126866
    Abstract: A phase-locked loop (PLL) includes a charge pump, a frequency divider, a voltage detector, a control module, and a calibration module. When a predetermined current amount and a predetermined frequency dividing amount are provided, the voltage detector measures a voltage associated with an output frequency of the PLL to generate a first reference voltage. When a test current amount and the predetermined frequency dividing amount are provided, the voltage detector again measures the voltage to generate a second reference voltage. When the predetermined current amount and a test frequency dividing amount are provided, the voltage detector again measures the voltage to generate a third reference voltage. The control module estimates a loop gain of the PLL according to the current amounts, the frequency dividing amounts and the reference voltages. The calibration module calibrates the PLL according to the loop gain.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: MSTAR SEMICONDUCTOR, INC.
    Inventors: Ming-Yu Hsieh, Shih-Chieh Yen
  • Publication number: 20120119801
    Abstract: A phase-locked loop (PLL) including an active filter, a voltage-controlled oscillator (VCO), two phase detectors, a charge pump and a digital-to-analog converter (DAC) is provided. The VCO generates an oscillation signal according to a control signal provided at an output of the active filter. The first phase detector generates a phase difference signal according to a reference signal and a feedback signal associating with the oscillation signal. The charge pump provides a charging current to a first input of the active filter according to the phase difference. The second phase detector generates a digital reference signal according to the phase difference between the reference signal and the feedback signal. The DAC converts the digital reference signal to an analog reference voltage and provides the analog reference voltage to the second input of the active filter.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 17, 2012
    Applicant: MSTAR SEMICONDUCTOR, INC.
    Inventors: Ming-Yu Hsieh, Shih-Chieh Yen
  • Patent number: 8060037
    Abstract: A circuit for calibrating the DC offset in a wireless communication device utilizes a voltage-generating circuit to generate a first voltage value and its negative value, and utilizes a detecting circuit to detect an output of the wireless communication device and generate a first target-branch reference value corresponding to the power of the output when the first voltage value is inputted into a target branch (e.g., the in-phase branch or the quadrature branch) of the wireless communication device, and detect an output of the wireless communication device and generate a second target-branch reference value corresponding to the power of the output when the negative value of the first voltage value is input into the target branch. Then, an estimating circuit estimates the DC offset on the target branch according to the first and second target-branch reference values and the first voltage value.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: November 15, 2011
    Assignee: MStar Semiconductor, Inc.
    Inventors: Ming-Yu Hsieh, Hsu-Hung Chang
  • Publication number: 20110158356
    Abstract: An apparatus for determining signal power comprise an oscillating circuit and a determining circuit. The oscillating circuit generates an oscillating signal. When a to-be-detected signal has signal power greater than a threshold, the oscillating signal has a first frequency; when the signal power is smaller than the threshold, the oscillating signal has a second frequency. The determining circuit determines whether the oscillating signal has either the first frequency or the second frequency, and generates a determination result accordingly.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 30, 2011
    Applicant: MStar Semiconductor, Inc.
    Inventors: MING-YU HSIEH, SHIH-CHIEH YEN
  • Publication number: 20110122965
    Abstract: An offset phase-locked loop (PLL) transmitter comprises a clock generator that generates a first clock signal; a detector that detects a phase difference between an input data signal and a feedback data signal to generate a control signal; a controlled oscillator, coupled to the detector, that generates an output data signal according to the control signal; a mixer, coupled to the controlled oscillator and the clock generator, that mixes the output data signal according to the first clock signal to generate the feedback data signal; and a control circuit, coupled to the detector and the controlled oscillator, that adjusts the operating frequency curve of the controlled oscillator by one of a first step distance and a second step distance smaller than the first step distance such that the control signal is substantially equal to a predetermined value.
    Type: Application
    Filed: October 25, 2010
    Publication date: May 26, 2011
    Applicant: MSTAR SEMICONDUCTOR, INC.
    Inventors: Shih-Chieh Yen, Yao-Chi Wang, Ming-Yu Hsieh
  • Patent number: 7948286
    Abstract: A loop bandwidth control apparatus applied to a phase locked loop (PLL) includes a first loop filter module, a second loop filter module, a control module, a first switching module, and a second switching module. The first filter module and the second loop filter module output a first voltage and a second voltage, respectively. The second loop filter module has a bandwidth different from that of the first loop filter module. According to one of the first voltage and the second voltage, the control module generates a bandwidth control signal. According to the bandwidth control signal, the first switching module forms a path between a charge pump and one of the first loop filter module and the second loop filter module, and the second switching module forms a path between a voltage-controlled oscillator (VCO) and one of the first loop filter module and the second loop filter module.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: May 24, 2011
    Assignee: MStar Semiconductor, Inc.
    Inventors: Shih-Chieh Yen, Yao-Chi Wang, Ming-Yu Hsieh
  • Publication number: 20110080199
    Abstract: A loop bandwidth control apparatus applied to a phase locked loop (PLL) includes a first loop filter module, a second loop filter module, a control module, a first switching module, and a second switching module. The first filter module and the second loop filter module output a first voltage and a second voltage, respectively. The second loop filter module has a bandwidth different from that of the first loop filter module. According to one of the first voltage and the second voltage, the control module generates a bandwidth control signal. According to the bandwidth control signal, the first switching module forms a path between a charge pump and one of the first loop filter module and the second loop filter module, and the second switching module forms a path between a voltage-controlled oscillator (VCO) and one of the first loop filter module and the second loop filter module.
    Type: Application
    Filed: August 24, 2010
    Publication date: April 7, 2011
    Applicant: MSTAR SEMICONDUCTOR, INC.
    Inventors: Shih-Chieh Yen, Yao-Chi Wang, Ming-Yu Hsieh
  • Publication number: 20110080196
    Abstract: A voltage-controlled oscillator (VCO) control circuit, used for controlling a VCO to process phase locking procedure after receiving a frequency locking signal, comprises an operating frequency controller and a judgment unit. The operating frequency controller, coupled to the VCO and the judgment unit, generates one of a first control code and a second control code to the VCO. The judgment unit, coupled to an input end of the VCO, generates a phase locking signal according to a voltage control signal inputted to the VCO. When the operating frequency controller receives the frequency locking signal, the operating frequency controller generates a first control code to control the VCO to switch from a first candidate VCO curve to a second candidate VCO curve. When the operating frequency controller receives the phase locking signal, the operating frequency controller generates a second control code to control the VCO to switch from the second candidate VCO curve to the first candidate VCO curve.
    Type: Application
    Filed: September 20, 2010
    Publication date: April 7, 2011
    Applicant: MSTAR SEMICONDUCTOR, INC.
    Inventors: Yao-Chi Wang, Ming-Yu Hsieh, Shih-Chieh Yen